首页> 外文学位 >Nonintrusive Stochastic Multiscale Design System for Heterogeneous Materials.
【24h】

Nonintrusive Stochastic Multiscale Design System for Heterogeneous Materials.

机译:非均质材料的非侵入式随机多尺度设计系统。

获取原文
获取原文并翻译 | 示例

摘要

Research on heterogeneous materials has attracted significant attentions due to their potential use in high performance application. The emphasis of this thesis is on a flexible design framework that is compatible with most commercial numerical packages. Due to inevitable randomness at the scale of heterogeneity resulting from manufacture process, the present framework aims at quantifying uncertainties in Quantities of Interest (QoI) at the coarse scale structure, such as critical stress and overall modulus. There are two main barriers for such a design framework to be applicable to practical design. One is the barrier associated with tremendous physical space involved with material scale which is much smaller than the component scale. The other is the barrier emanating from high dimensional probability space.;The first barrier has been addressed by reduced order homogenization. A canonical framework has been devised to provide a transparent interface linking single scale material building blocks. Users can add their own material models for fine scale phase or interface by providing single scale stress update and stress consistent tangent operator. Damage, fatigue, plasticity and viscoplasticity laws have been verified and validated with several industrial applications. This canonical framework enabled the integration of a deterministic multiscale design system with ABAQUS, LS-DYNA and FEAP.;The second barrier has been addressed by stochastic collocation methods in combination with Karhunen-Loeve expansion. In the present study, randomness has been limited to the parameters in fine scale material constitutive laws. Both low dimensional probability space (random variables) and high dimensional probability space (random fields) have been studied with individual design schemes. The collocation methods have been verified with sampling method based on Monte Carlo method (Latin hypercube sampling).
机译:异质材料的研究由于其在高性能应用中的潜在用途而备受关注。本文的重点是与大多数商业数字软件包兼容的灵活设计框架。由于制造过程在异质性尺度上不可避免地存在随机性,因此本框架旨在量化粗尺度结构中感兴趣的量(QoI)的不确定性,例如临界应力和总模量。这种设计框架要应用于实际设计有两个主要障碍。一种是与材料规模相关的巨大物理空间相关的障碍,该空间远小于组件规模。另一个是来自高维概率空间的障碍。第一个障碍已通过降低阶次均质化解决。已经设计出规范的框架以提供链接单尺度材料构建块的透明界面。用户可以通过提供单比例应力更新和应力一致的切线算子来添加自己的材料模型以用于精细比例阶段或界面。损坏,疲劳,可塑性和粘塑性定律已在多种工业应用中得到验证。该规范框架使确定性多尺度设计系统与ABAQUS,LS-DYNA和FEAP集成。第二个障碍已通过随机配置方法与Karhunen-Loeve扩展相结合解决。在本研究中,随机性已被限制在精细尺度材料本构定律中的参数。低维概率空间(随机变量)和高维概率空间(随机字段)均已通过单独的设计方案进行了研究。搭配方法已通过基于蒙特卡洛方法的采样方法(拉丁超立方体采样)进行了验证。

著录项

  • 作者

    Wu, Wei.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号