首页> 外文学位 >Algorithmic algebraic model checking: Hybrid automata and systems biology.
【24h】

Algorithmic algebraic model checking: Hybrid automata and systems biology.

机译:算法代数模型检查:混合自动机和系统生物学。

获取原文
获取原文并翻译 | 示例

摘要

Systems Biology strives to hasten our understanding of the fundamental principles of life by adopting a global systems-level approach for the analysis of cellular function and behavior. Hybrid Automata are an ideal framework for capturing the chemical kinetics of interacting biochemicals. Our goal in this thesis is to aid Systems Biology research by improving the current understanding of hybrid automata.; We first provide new constructions that prove that the "open" HPCD subclass is closer to decidability and undecidability than was previously thought. However, the low dimensionality constraint that must be met for this class to be decidable makes it unsuitable for modeling chemical reactions. Our quest for semi-decidable subclasses leads us to define the "semi-algebraic" subclass. This is the most expressive hybrid automaton subclass amenable to rigorous symbolic temporal reasoning. We begin with the bounded reachability problem, and then show how the dense-time temporal logic TCTL can be model-checked by exploiting techniques from real algebraic geometry, primarily real quantifier elimination. We also prove the undecidability of reachability in the real Turing Machine formalism. We then develop efficient approximation strategies for semi-algebraic hybrid systems by extending bisimulation partitioning, rectangular grid-based approximation, polytopal approximation and time discretization. We identify well-behaved subclasses and develop new optimizations. We then develop a uniform algebraic framework for modeling biochemical and metabolic networks. We extend the flux balance analysis based approach for equilibrium characterization. We present some preliminary results using a prototypical tool Tolque. It is a symbolic algebraic dense time model-checker for semi-algebraic hybrid automata, which uses Qepcad for quantifier elimination.; The techniques developed in this thesis present a mathematically well-grounded platform for powerful symbolic reasoning over biochemical networks and other semi-algebraic hybrid automata. It is hoped that the by building upon this thesis, along with the development of computationally efficient quantifier elimination algorithms and the integration of different computer algebra tools, scientific software systems will emerge that fundamentally transform the way biochemical networks (and other hybrid automata) are investigated and understood.
机译:系统生物学通过采用全局系统级方法来分析细胞功能和行为,努力加深我们对生命基本原理的理解。混合自动机是捕获相互作用的生化试剂的化学动力学的理想框架。本文的目标是通过增进对混合自动机的当前理解来帮助系统生物学研究。我们首先提供新的结构,以证明“开放的” HPCD子类比以前认为的更接近可判定性和不可判定性。但是,要确定此类必须满足的低维约束使其不适用于对化学反应进行建模。我们对半确定子类的追求使我们定义了“半代数”子类。这是适用于严格的符号时间推理的最具表现力的混合自动机子类。我们从有界可达性问题开始,然后说明如何通过利用实际代数几何中的技术(主要是实际量词消除)来对密集时间时序逻辑TCTL进行模型检查。我们还证明了在真正的图灵机形式主义中无法确定可达性。然后,我们通过扩展双仿真分区,基于矩形网格的逼近,多拓扑逼近和时间离散化,为半代数混合系统开发有效的逼近策略。我们确定行为良好的子类并开发新的优化。然后,我们为生物化学和代谢网络建模建立统一的代数框架。我们扩展了基于通量平衡分析的平衡表征方法。我们使用原型工具Tolque提出了一些初步结果。它是半代数混合自动机的符号代数密集时间模型检查器,它使用Qepcad消除量词。本论文开发的技术提供了一个数学基础良好的平台,可在生化网络和其他半代数混合自动机上进行强大的符号推理。希望以此为基础,随着计算有效的量词消除算法的发展以及不同计算机代数工具的集成,科学软件系统将会出现,从根本上改变研究生化网络(和其他混合自动机)的方式。和了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号