首页> 外文学位 >Developing non-invasive processing methodologies and understanding the materials properties of solution-processable organic semiconductors for organic electronics.
【24h】

Developing non-invasive processing methodologies and understanding the materials properties of solution-processable organic semiconductors for organic electronics.

机译:开发非侵入性加工方法并了解有机电子可溶液加工的有机半导体的材料特性。

获取原文
获取原文并翻译 | 示例

摘要

Essential to the success of organic electronics, and in particular organic thin-film transistors, is the realization of stable, high-mobility, electrically-active organic materials that can enable low-cost solution-based processing methods. The development of viable solution-processable organic semiconductors helps make this possible. Consequently, understanding the materials properties of solution-processable organic semiconductors and how the processing conditions associated with device fabrication affect device performance are key to realizing low-cost organic electronics. In this work, we focused on understanding the processing-structure-property relationships of a solution-processable organic semiconductor, triethylsilylethylnyl anthradithiophene (TES ADT). Specifically, we demonstrated how a solvent-vapor annealing process can induce the crystallization of TES ADT post device processing. Bottom-contact thin-film transistors with annealed TES ADT routinely exhibit an average charge-carrier mobility of 0.1 cm2/V-s, which is sufficient to drive backplane circuitry in flexible display applications.; Additionally, we demonstrated that the manner in which source and drain electrodes are defined significantly affects the performance of the resulting TES ADT thin-film transistors. Specifically, the yield of functioning top-contact TES ADT thin-film transistors with electrodes defined by evaporation through a shadow mask directly on the organic semiconductor is low, and of the functioning devices, the charge-carrier mobility varies significantly (0.01--0.1 cm2/V-s). In comparison, top-contact TES ADT thin-film transistors with electrodes defined separately and then laminated against the organic semiconductors have high yield and high charge-carrier mobility (0.2 +/- 0.06 cm2/V-s). This result emphasizes the importance of adapting existing or developing new thin-film transistor fabrication techniques to overcome the materials limitations of organic semiconductors. Along the same vein, we also demonstrated an elastomeric stamp-based, solventless printing process, nanotransfer printing (nTP), for the additive patterning of copper electrodes and interconnects of feature sizes 1--500 mum. These printed copper patterns differ from similarly printed gold patterns in that they are not electrically conductive. Leaching the elastomeric stamps in hot toluene prior to printing, however, allowed us to routinely print conductive copper features with an average resistivity of 31 muO-cm.; Another aspect of thin-film transistor fabrication that is crucial for optimal device performance (i.e., low off currents and low leakage currents) is the patterning and isolation of the organic semiconductor between neighboring devices. We demonstrated two novel techniques for patterning TES ADT. The first technique utilizes UV light in the presence of dichloroethane vapors to simultaneously pattern and crystallize TES ADT. TES ADT thin-film transistors patterned with this technique exhibit high charge-carrier mobility (0.1 cm2/V-s) and low off currents (10-11 A). The second patterning technique uses a PDMS stamp to selectively remove TES ADT from the non-channel regions of the thin-film transistor. This technique can be used to pattern both as-spun and crystalline TES ADT thin films. Crystalline TES ADT thin-film transistors patterned with this technique exhibit an average charge-carrier mobility of 0.2 cm2/V-s and low off currents on the order of 10-11 A, while amorphous TES ADT thin films that are first patterned and then crystallized exhibit an average charge-carrier mobility of 0.1 cm2/V-s and off currents on the order of 10 -10 A.
机译:有机电子尤其是有机薄膜晶体管取得成功的关键是要获得稳定,高迁移率的电活性有机材料,这些材料可以实现低成本的基于溶液的加工方法。可行的可溶液加工的有机半导体的发展有助于实现这一点。因此,了解可溶液处理的有机半导体的材料特性以及与器件制造相关的加工条件如何影响器件性能是实现低成本有机电子的关键。在这项工作中,我们专注于理解可溶液处理的有机半导体三乙基甲硅烷基乙炔基蒽噻吩(TES ADT)的处理结构性质关系。具体来说,我们展示了溶剂-蒸气退火过程如何诱导TES ADT装置后处理的结晶。带有TES ADT退火工艺的底部接触薄膜晶体管通常表现出0.1 cm2 / V-s的平均载流子迁移率,这足以驱动柔性显示应用中的背板电路。此外,我们证明了定义源电极和漏电极的方式会显着影响所得TES ADT薄膜晶体管的性能。具体而言,具有功能的顶接触式TES ADT薄膜晶体管的良率低,其电极是通过直接通过有机半导体上的荫罩蒸发而定义的,而在正常运行的器件中,载流子迁移率显着变化(0.01--0.1 cm2 / Vs)。相比之下,顶部接触式TES ADT薄膜晶体管具有单独定义的电极,然后层压在有机半导体上,具有较高的良率和较高的载流子迁移率(0.2 +/- 0.06 cm2 / V-s)。该结果强调了适应现有或开发新的薄膜晶体管制造技术以克服有机半导体的材料限制的重要性。同样,我们还展示了一种基于弹性体图章的无溶剂印刷工艺,纳米转移印刷(nTP),用于铜电极和特征尺寸为1-500微米的互连的附加图案化。这些印刷的铜图案不同于类似的印刷的金图案,因为它们不导电。然而,在印刷之前先在热甲苯中浸出弹性体印模,这使我们能够例行印刷平均电阻率为31μO-cm的导电铜部件。对于最佳器件性能(即低截止电流和低泄漏电流)至关重要的薄膜晶体管制造的另一方面是相邻器件之间的有机半导体的图案化和隔离。我们演示了两种用于图案化TES ADT的新颖技术。第一种技术是在存在二氯乙烷蒸气的情况下利用紫外线来同时使TES ADT图案化和结晶。用这种技术构图的TES ADT薄膜晶体管表现出高的载流子迁移率(0.1 cm2 / V-s)和低的关断电流(10-11 A)。第二种构图技术使用PDMS标记从薄膜晶体管的非沟道区选择性地去除TES ADT。该技术可用于对初纺和结晶TES ADT薄膜进行构图。用这种技术构图的晶体TES ADT薄膜晶体管表现出0.2 cm2 / Vs的平均电荷载流子迁移率和10-11 A量级的低截止电流,而先构图然后结晶的非晶TES ADT薄膜表现出平均电荷载流子迁移率为0.1 cm2 / Vs,截止电流为10 -10A。

著录项

  • 作者

    Dickey, Kimberly Christine.;

  • 作者单位

    The University of Texas at Austin.$bDepartment of Chemical Engineering.;

  • 授予单位 The University of Texas at Austin.$bDepartment of Chemical Engineering.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号