首页> 外文学位 >Numerical modeling of homogeneous and bimaterial crack tip and interfacial cohesive zones with various traction-displacement laws.
【24h】

Numerical modeling of homogeneous and bimaterial crack tip and interfacial cohesive zones with various traction-displacement laws.

机译:具有不同牵引位移规律的均质和双材料裂纹尖端和界面内聚区的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates problems that involve the cohesive response at a crack tip in a homogeneous material, at a crack tip in a bimaterial interface, and an investigation of the cohesive response of an interface. The first investigation outlines a methodology for computing the non-linear generalized load-displacement response of an edge-cracked beam shaped element with a softening crack-plane cohesive zone. The non-linear load-displacement response is intended for use in various possible techniques of nondestructive characterization of the cohesive material properties using the vibration properties of a cracked cohesive beam. The cracked beam shaped geometry is divided into two bodies which interact across the crack plane through appropriate boundary conditions and each body is loaded by a bending couple away from the crack plane. The mode I cohesive law used here is strictly softening and linear. The direct boundary element method (BEM) is applied to each body and the connecting boundary conditions and an iterative scheme is used to determine the extent of the cohesive zone. The J-integral associated with the single crack tip is then calculated from the BEM crack plane tractions and displacements and is used to numerically evaluate the generalized non-linear load-displacement relations. The second investigation outlines a novel approach to numerically model a Dugdale-Barenblatt cohesive zone at an interface crack between two dissimilar materials. The direct BEM approach is once again used here to appropriately apply the constraints in the cohesive zone and obtain a physically meaningful solution for tractions and displacements in the crack plane. The effect of material mismatch and the effect of varying bond strength on the interface fracture energy as expressed by the individual mode I and mode II contributions to the J-integral is also studied. This approach provides a heretofore unavailable convenient method for calculating the local crack tip mode mixity, the total energy release rate and its decomposition into the separate mode contributions as a function of the applied mode mixity and material mismatch. The third investigation concerns the dispersion relations for time-harmonic guided waves in a layer connected to a rigid substrate by a very thin interface layer of material with nonlinear and softening behavior. The interfacial spring stiffness which, is directly included in the dynamic layer boundary conditions, may be interpreted as the local slope of the cohesive law at the static pre-load level. The spring stiffnesses inferred from the dispersion relations of either SH or generalized Rayleigh-Lamb waves from a series of measurements taken at multiple pre-load levels could then be integrated to obtain the cohesive law.
机译:本文研究的问题涉及均质材料的裂纹尖端,双材料界面的裂纹尖端的内聚响应,以及界面的内聚响应。第一项研究概述了一种计算带有软化裂纹平面内聚区的边缘裂纹梁形单元的非线性广义载荷-位移响应的方法。非线性载荷-位移响应旨在用于使用破裂的粘结梁的振动特性对粘结材料特性进行非破坏性表征的各种可能技术中。开裂的梁形几何体被分成两个主体,它们通过适当的边界条件在整个裂纹平面上相互作用,并且每个主体都通过远离裂纹平面的弯曲偶加载。我在这里使用的内聚规律严格是柔化和线性的。将直接边界元方法(BEM)应用于每个主体以及连接边界条件,并使用迭代方案来确定粘聚区的范围。然后,根据BEM裂纹平面的牵引力和位移计算与单个裂纹尖端相关的J积分,并将其用于数值评估广义非线性载荷-位移关系。第二项研究概述了一种在两种异种材料之间的界面裂纹处对Dugdale-Barenblatt粘结区进行数值模拟的新颖方法。在这里再次使用直接BEM方法来适当地施加约束区域中的约束,并为裂缝平面中的牵引和位移获得物理上有意义的解决方案。还研究了材料失配的影响以及键强度变化对界面断裂能的影响,这由I型和II型对J积分的贡献表示。这种方法为计算局部裂纹尖端模式混合度,总能量释放速率及其分解为所施加的模式混合度和材料失配的函数提供了一种迄今为止尚不方便的简便方法。第三次研究涉及通过具有非线性和软化特性的非常薄的材料界面层连接到刚性基板的层中的时间谐波导波的色散关系。直接包含在动态层边界条件中的界面弹簧刚度可以解释为在静态预载荷水平下内聚规律的局部斜率。从SH或广义Rayleigh-Lamb波的色散关系推断出的弹簧刚度,可以从在多个预载荷水平下进行的一系列测量中得出,然后进行积分以获得内聚规律。

著录项

  • 作者

    Mokashi, Prasad Shrikant.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Applied Mechanics.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号