首页> 外文学位 >Flight validated high-order models of UAV helicopter dynamics in hover and forward flight using analytical and parameter identification techniques.
【24h】

Flight validated high-order models of UAV helicopter dynamics in hover and forward flight using analytical and parameter identification techniques.

机译:使用分析和参数识别技术,经过飞行验证的无人机直升机在悬停和向前飞行中的高阶模型。

获取原文
获取原文并翻译 | 示例

摘要

There has been a significant growth in the use of UAV helicopters for a multitude of military and civilian applications over the last few years. Due to these numerous applications, from crop dusting to remote sensing, UAV helicopters are now a major topic of interest within the aerospace community. The main research focus is on the development of automatic flight control systems (AFCS). The design of AFCS for these vehicles requires a mathematical model representing the dynamics of the vehicle. The mathematical model is developed either from first-principles, using the equations of motion of the vehicle, or from the flight data, using parameter identification techniques. The traditional six-degrees-of-freedom (6-DoF) dynamics model is not suitable for high-bandwidth control system design. Such models are valid only within the low- to mid-frequency range.;The agility and high maneuverability of small-scale helicopters require a high-bandwidth control system for full authority autonomous performance. The design of a high-bandwidth control system in turn requires a high-fidelity simulation model that is able to capture the key dynamics of the helicopter. These dynamics include the rotor dynamics.;This dissertation presents the development of a 14-degrees-of-freedom (14-DoF) state-space linear model for the KU Thunder Tiger Raptor 50 UAV helicopter from first-principles and from flight test data using a parameter identification technique for the hovering and forward flight conditions. The model includes rigid body, rotor regressive, rotor inflow, stabilizer bar, and rotor coning dynamics. The model is implemented within The MathWork's MATLAB/Simulink environment. The simulation results show that the high-order model is able to predict the helicopter's dynamics up to the frequency of 30 rad/sec.;The main contributions of this dissertation are the development of a high-order simulation model for a small UAV helicopter from first-principles and the identification of a high-order model for a UAV helicopter of the size of the Raptor 50 helicopter using flight test data. Another key contribution of this research is the calculation and identification of stability and control derivatives for the Raptor 50 helicopter. These can readily be used without any further modification for the design of control systems.
机译:在过去的几年中,无人机在许多军事和民用应用中的使用有了显着增长。由于从农作物除尘到遥感这些众多的应用,无人机直升机现已成为航空航天界关注的主要话题。主要研究重点是自动飞行控制系统(AFCS)的开发。这些车辆的AFCS设计需要代表车辆动力学的数学模型。数学模型可以从第一性原理(使用车辆的运动方程式)开发,也可以从飞行数据(使用参数识别技术)开发。传统的六自由度(6-DoF)动力学模型不适用于高带宽控制系统设计。此类模型仅在中低频率范围内有效。小型直升机的敏捷性和高机动性要求具有高带宽控制系统才能实现完全自主的性能。反过来,高带宽控制系统的设计需要能够捕捉直升机关键动力的高保真仿真模型。这些动力学包括转子动力学。本论文从第一性原理和飞行试验数据出发,为KU Thunder Tiger Raptor 50 UAV直升机开发了14自由度(14DoF)状态空间线性模型。使用参数识别技术来测量悬停和前进飞行条件。该模型包括刚体,转子回归,转子流入,稳定杆和转子锥动力学。该模型是在MathWork的MATLAB / Simulink环境中实现的。仿真结果表明,该高阶模型能够预测高达30 rad / sec的频率的直升机动态。本论文的主要贡献是开发了一种小型UAV直升机的高阶仿真模型。原理,并使用飞行测试数据确定了Raptor 50直升机大小的UAV直升机的高阶模型。这项研究的另一个关键贡献是Raptor 50直升机的稳定性和控制导数的计算和识别。这些无需更改就可轻松用于控制系统的设计。

著录项

  • 作者

    Bhandari, Subodh.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号