首页> 外文学位 >Physical and numerical modeling of nonlinear cyclic load-deformation behavior of shallow foundations supporting rocking shear walls.
【24h】

Physical and numerical modeling of nonlinear cyclic load-deformation behavior of shallow foundations supporting rocking shear walls.

机译:支撑摇摆剪力墙的浅层基础非线性循环荷载-变形特性的物理和数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

A shear wall supported by a shallow foundation system is a commonly used seismic-force-resisting structural building system, yet there are many unresolved issues regarding their design and performance. One of the major changes in the traditional seismic design procedures adopted in the 1997 Federal Emergency Management Agency's (FEMA) Building Retrofit NEHRP Guidelines was to allow mobilization of the ultimate capacity and rocking behavior of shallow foundations to reduce the ductility demands on structures. However, the uncertainty in soil properties, the absence of practical reliable foundation modeling techniques, and the resulting permanent settlement beneath the footing due to foundation rocking have hindered the use of nonlinear soil-foundation-structure interaction as a mechanism for reducing demands on the structure in practice.; About sixty footings, representative of footings for building shear walls, were tested in a centrifuge under cyclic vertical (V), horizontal (H), and moment (M) loading; some were tested in slow cyclic loading while others were shaken using the shaking table on the centrifuge. Footing dimensions, depth of embedment, shear wall weight, soil strength, initial static vertical factor of safety (FSV), and loading paths were systematically varied. Experimental findings suggest that footings with higher FSV are capable of dissipating energy (approximately 20% of critical damping for FS V ≈ 10) through foundation rocking without causing excessive permanent settlement. Moment capacity of the foundation does not degrade significantly with increasing cyclic rotation for the types of soils tested in the experiments.; A new "contact interface model" has been developed to provide coupled nonlinear constitutive relations between cyclic loads (V-H-M) and displacements (settlement, sliding, and rotation) of the footing-soil system. The footing and the soil beneath the footing, considered as a macro-element, were modeled with the introduction of a new parameter, critical contact length ratio (Lc/L), where Lc is the minimum length of the footing required to be in contact with the soil to satisfy equilibrium. The contact interface model is able to predict load capacities, stiffness degradation, permanent and cyclic displacements, and hysteretic energy dissipation as measured in the centrifuge experiments. The contact interface model is implemented and tested in OpenSEES finite element framework.
机译:浅基础系统支撑的剪力墙是一种常用的抗震结构建筑系统,但在设计和性能方面仍存在许多未解决的问题。 1997年美国联邦紧急事务管理局(FEMA)建筑改造NEHRP指南采用的传统抗震设计程序的主要变化之一是允许调动浅层基础的极限承载力和摇摆特性,以降低结构的延性要求。但是,由于土壤特性的不确定性,缺乏实用可靠的基础建模技术以及由于基础摇摆而导致的基础下永久沉降,阻碍了非线性地基-结构相互作用作为减少对结构要求的机制的使用。在实践中。;在循环垂直(V),水平(H)和弯矩(M)载荷下,在离心机中测试了约60个代表建筑剪力墙的基础的基础。其中一些在缓慢的循环负载下进行了测试,而另一些则使用离心机上的振动台进行了振动。系统地改变了基础尺寸,嵌入深度,剪力墙重量,土壤强度,初始静态垂直安全系数(FSV)和加载路径。实验结果表明,具有较高FSV的基础可以通过基础摇摆消散能量(对于FS V≈ 10,约为临界阻尼的20%),而不会引起过多的永久沉降。对于实验中测试的土壤类型,基础的动量不会随着循环旋转的增加而显着降低。已经开发了一种新的“接触界面模型”,以提供循环荷载(V-H-M)与基础土壤系统的位移(沉降,滑动和旋转)之间的耦合非线性本构关系。底脚和底脚下面的土壤(被视为宏观元素)通过引入新参数临界接触长度比(Lc / L)建模,其中Lc是需要接触的底脚最小长度与土壤满足平衡。接触界面模型能够预测负载能力,刚度降低,永久和周期性位移以及在离心机实验中测得的滞回耗能。联系人接口模型是在OpenSEES有限元框架中实现和测试的。

著录项

  • 作者

    Gajan, Sivapalan.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Applied Mechanics.; Engineering Civil.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 373 p.
  • 总页数 373
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号