首页> 外文学位 >Development of a heading correction model for parafoil-assisted descent of a high altitude balloon system.
【24h】

Development of a heading correction model for parafoil-assisted descent of a high altitude balloon system.

机译:开发高空气球系统的翼型辅助下降的航向校正模型。

获取原文
获取原文并翻译 | 示例

摘要

The University of Kansas High Altitude Balloon System (HABS) uses a parachute for descent after release from the helium balloon. The parachute descent direction is not controlled and the HABS has to be recovered from its landing site by two chase teams that follow the HABS trajectory based on GPS downlink and unreliable predictions. Also, the landing site itself can be an undesired one. Water bodies, trees, highways are some of the undesired landing spots. Thus, a dedicated subsystem for the monitoring and control of the descent of the HABS is highly desirable.; The Advanced High Altitude Balloon System (AHABS) uses a parafoil-assisted Controlled Landing Subsystem (CLS) to autonomously control the landing of AHABS at a predetermined site. The control algorithm corrects the trajectory for heading, crosswind and near-Earth features like vegetation, power lines, towers, houses etc. Here, the implementation of the heading correction algorithm is discussed. This simulation plots the trajectory of the vehicle after deployment of the parafoil taking into consideration different cross-wind velocities and headings.; A servosystem is used for changing the angle of attack of the parafoil during flight and to make crucial maneuvers. The guidance hardware, including the GPS, Differential GPS, digital compass and a microcontroller chipset, are used for acquisition of co-ordinates and other important data and to handle the operations of the CLS respectively. The flight software is stored on the microcontroller memory module. The manual control mode of the vehicle can be activated by command from the ground station. Finally, the CCTV camera cluster is useful in providing a visual window to aid the manual controller in guiding the vehicle effectively to safe landing.; The algorithm for the flight software is a generalized one and has been adopted for both the simulation program and the microcontroller program. The simulation shows the expected trajectory along with the ideal (no crosswind) and general (no correction for crosswind) trajectories. The error in the landing site can be determined from the resultant plots.; The Controlled Landing Subsystem will not only provide more predictable flight for the HABS but it can be used in several projects other than HABS. Future work in this area will open new vistas in the field of automated recovery of systems.; This work deals only with the heading correction part of the CLS and not the complete design. Here a computer simulation has been developed for predicting the descent of the vehicle using the CLS. The design of the entire system has not been done in this work.
机译:堪萨斯大学高空气球系统(HABS)使用降落伞从氦气球中释放后下降。降落伞的下降方向不受控制,HABS必须由两个追赶小组从其着陆点恢复,这两个追逐小组根据GPS下行链路和不可靠的预测遵循HABS的轨迹。同样,着陆点本身可能是不希望的。水体,树木,公路是一些不希望的着陆点。因此,非常需要用于监视和控制HABS下降的专用子系统。先进的高空气球系统(AHABS)使用翼型辅助的受控着陆子系统(CLS)来自主控制AHABS在预定位置的着陆。控制算法校正航向,侧风和近地特征的轨迹,例如植被,电力线,铁塔,房屋等。在此,讨论航向校正算法的实现。该模拟绘制了考虑到不同的侧风速度和航向的翼型展开后的车辆轨迹。伺服系统用于在飞行过程中改变翼型的迎角并进行关键的机动。制导硬件,包括GPS,差分GPS,数字罗盘和微控制器芯片组,用于获取坐标和其他重要数据并分别处理CLS的操作。飞行软件存储在微控制器存储模块中。可以通过地面站的命令激活车辆的手动控制模式。最后,闭路电视摄像机组可用于提供可视窗口,以帮助手动控制器有效引导车辆安全着陆。飞行软件的算法是一种通用算法,已被仿真程序和微控制器程序采用。仿真显示了预期的轨迹以及理想(无侧风)轨迹和常规(无侧风校正)轨迹。可以从结果图确定着陆点的误差。受控着陆子系统不仅可以为HABS提供更可预测的飞行,而且还可以用于HABS以外的其他多个项目。该领域未来的工作将在系统自动恢复领域开辟新的前景。这项工作仅涉及CLS的航向校正部分,而不涉及整个设计。在这里,已经开发出了计算机仿真,用于使用CLS预测车辆的下降。这项工作尚未完成整个系统的设计。

著录项

  • 作者

    Dimble, Kedar Dnyaneshwar.;

  • 作者单位

    University of Kansas.$bAerospace Engineering.;

  • 授予单位 University of Kansas.$bAerospace Engineering.;
  • 学科 Engineering Aerospace.
  • 学位 M.S.
  • 年度 2007
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号