首页> 外文学位 >Scrap melting in a continuous process rotary melting furnace.
【24h】

Scrap melting in a continuous process rotary melting furnace.

机译:废料在连续式旋转熔化炉中熔化。

获取原文
获取原文并翻译 | 示例

摘要

Based on the preliminary modeling study, an improved heat-transfer model has been developed in this study to further examine the viability of the oxy-fuel-fired continuous process rotary melting furnace (CPRMF) as a replacement of the electric arc furnace (EAF) in minimill steelmaking. The model treats the furnace as three domains: the freeboard space, the liquid metal bath and slag, and the refractory structure. Based on certain physical correct assumptions for the gas flow and combustion patterns, radiative exchange within the freeboard is solved by the zone method in combination with a clear-plus-3-gray emissivity/absorptivity model for the gas phase thus the model allows axial temperature variations in the gas phase and the refractory hot-face. Assuming an isothermal metal bath condition, heat transfer to the exposed bath is simplified by a specified temperature difference between the slag/freeboard and slag/metal interfaces, while regenerative heat transfer to the covered bath is calculated using the local refractory temperature and the local heat-transfer coefficients. The refractory structure is solved by 1-D transient conduction in the radial direction. The three domains are linked by shared boundary conditions and the requirement that the furnace itself operates at steady-state.; The model was partially validated using experimental results from copper melting trials on a bench-scale CPRMF, which was designed and constructed as a part of work in this study. The trials explored two operating variables, i.e., oxygen and slag. Both experimental and model results indicate an increase in furnace thermal efficiency with increasing oxygen enrichment in the combustion air and a decrease in the efficiency with increasing slag thickness. The partially validated model was then employed to evaluate the commercial viability of the CPRMF. According to the model predictions, a melting rate in the order of 100 ton h-1 can be achieved by a 4 m ID x 16 m furnace with a natural gas firing rate of 6000 Nm3 h-1. Under the baseline conditions, the furnace thermal efficiency is 66%. Without scrap preheating, this configuration consumes less direct energy at 619 kWh t-1 than the typical EAF (662 kWh t-1) and can save at-source energy by about 45%.
机译:在初步建模研究的基础上,本研究开发了一种改进的传热模型,以进一步检验用氧燃料燃烧的连续过程旋转熔化炉(CPRMF)替代电弧炉(EAF)的可行性。在小型钢厂炼钢中。该模型将熔炉分为三个区域:干舷空间,液态金属熔池和熔渣以及耐火材料结构。基于对气体流动和燃烧模式的某些物理正确假设,干区内的辐射交换通过区域方法结合气相的清晰的+3灰色发射率/吸收率模型解决,因此该模型允许轴向温度气相和耐火表面的变化。假设金属浴处于恒温状态,通过炉渣/干舷和炉渣/金属界面之间的指定温差简化了向裸露浴的传热,而利用局部耐火温度和局部热量计算了向有盖浴的再生热传递-转移系数。通过沿径向的一维瞬态传导解决了耐火结构。这三个域通过共同的边界条件和熔炉本身在稳态下运行的要求联系在一起。该模型已通过在实验室规模CPRMF上进行的铜熔炼试验的实验结果进行了部分验证,该模型的设计和构建是本研究工作的一部分。试验探索了两个操作变量,即氧气和炉渣。实验和模型结果均表明,随着燃烧空气中氧气富集度的增加,炉子的热效率增加;而炉渣厚度的增加,效率降低。然后,使用部分验证的模型来评估CPRMF的商业可行性。根据模型预测,可以通过使用天然气燃烧速率为6000 Nm3 h-1的4 m ID x 16 m炉实现100吨h-1的熔化速率。在基准条件下,炉子的热效率为66%。在没有废料预热的情况下,此配置在619 kWh t-1时消耗的直接能量比典型的EAF(662 kWh t-1)少,并且可以节省约45%的源头能量。

著录项

  • 作者

    Zhang, Yanjun.;

  • 作者单位

    The University of British Columbia (Canada).;

  • 授予单位 The University of British Columbia (Canada).;
  • 学科 Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金工业;
  • 关键词

  • 入库时间 2022-08-17 11:40:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号