首页> 外文学位 >Control techniques for multi-phase permanent magnet motor drives under open circuit faults and multi-phase DC-DC power converter.
【24h】

Control techniques for multi-phase permanent magnet motor drives under open circuit faults and multi-phase DC-DC power converter.

机译:开路故障和多相DC-DC功率转换器下的多相永磁电动机驱动器的控制技术。

获取原文
获取原文并翻译 | 示例

摘要

In electric motor drive applications, where high reliability is demanded, it is crucial to continue the drive operation under fault conditions. The multi-phase machines are advantageous over the conventional three-phase machines for fault-tolerant operation. This is because in a multi-phase machine, when faults occur in one or more number of phases, the machine can still continue its operation by using the remaining healthy phases. In this work, at first, the fault-tolerant control of multi-phase permanent magnet (PM) motor drives in the time domain is presented. An optimum open circuit fault-tolerant control technique for general n-phase PM machines, which can be applied for both sinusoidal and non-sinusoidal back-EMFs, is proposed. The fault-tolerant control technique is developed based on the instantaneous power balance theory. Closed form expressions are derived to calculate the excitation currents in the healthy phases which can produce the desired output torque under various open circuit fault conditions with zero torque pulsations, zero neutral current, and minimum stator ohmic loss. In the next part of this work, fault-tolerant control techniques for multi-phase PM machine drives in the frequency domain are presented. A theory of mirror symmetry is proposed to correlate the phase angles and amplitudes of the currents in the healthy phases, based on their spatial symmetry with respect to the fault in the motor drive. Utilizing the mirror symmetry in the healthy phase currents, a general fault-tolerant control approach is proposed for the multi-phase PM machines. The proposed approach is applied to derive fault-tolerant control techniques for five-phase PM machines with sinusoidal back-EMF and trapezoidal back-EMF. Optimum solutions for the fault-tolerant currents are obtained to operate the PM machines under single-phase and double-phase fault conditions. The proposed control techniques can successfully operate the multi-phase PM machines under different fault conditions with low torque pulsations and high output torque.;In the final part of this work, a high efficiency and high step-up non-isolated multiphase DC-DC converter is proposed. The proposed converter can be used as an interface between the low voltage sources and the output loads, which are operated at much higher voltages. Examples of such applications are: interfaces between the low voltage distributed energy storage components (batteries, fuel cells, and ultracapacitors used in the Hybrid Electric Vehicles, Electric Vehicles and Fuel Cell Vehicles) and the high voltage motor drive bus, High Intensity Discharge (HID) lamp ballasts, photovoltaic (PV) cells etc. The conventional boost converter is not suitable for such high voltage step-up application, as it can not be optimally designed to operate at a high efficiency. In the proposed converter circuit, coupled-inductor boost converters are interleaved. The leakage inductance, present in a practical coupled-inductor boost converter, causes high voltage stress on the switch and significant losses in the converter circuit. In this work, a common active clamp circuit is proposed to limit the voltage stresses on the switches of the interleaved converters to a lower level. The leakage energies of the interleaved converters are collected in a single capacitor and recycled to the output. The proposed multi-phase converter achieves high efficiency because of the recycled leakage energies, reduction of the switch voltage stress, mitigation of the output diode's reverse recovery problem, and interleaving of the coupled-inductor boost converters.
机译:在要求高可靠性的电动机驱动应用中,至关重要的是在故障条件下继续驱动操作。对于容错操作,多相电机优于常规的三相电机。这是因为在多相电机中,当一个或多个相中发生故障时,电机仍可以通过使用剩余的正常相来继续运行。在这项工作中,首先,提出了时域中的多相永磁(PM)电动机驱动器的容错控制。提出了一种适用于正弦波和非正弦波反电动势的通用n相永磁电机的最优开路容错控制技术。基于瞬时功率平衡理论发展了容错控制技术。得出闭合形式的表达式,以计算健康阶段的励磁电流,该励磁电流可以在各种开路故障条件下以零转矩脉动,零中性电流和最小定子欧姆损耗产生期望的输出转矩。在本工作的下一部分中,将介绍频域中多相PM机器驱动器的容错控制技术。提出了一种镜像对称性理论,基于相对于电机驱动器故障的空间对称性,将健康相中电流的相位角和幅度相关联。利用健康相电流中的镜像对称性,提出了一种多相永磁电机的通用容错控制方法。该方法适用于推导具有正弦反电动势和梯形反电动势的五相永磁电机的容错控制技术。获得了容错电流的最佳解决方案,以在单相和双相故障条件下运行永磁电机。所提出的控制技术可以使低转矩脉动和高输出转矩的多相永磁电机在不同的故障条件下成功运行。在本工作的最后部分,提出了一种高效,高升压的非隔离多相直流-直流电动机。建议使用转换器。所提出的转换器可以用作低压源和输出负载之间的接口,它们在更高的电压下工作。此类应用的示例包括:低压分布式储能组件(混合动力汽车,电动汽车和燃料电池汽车中使用的电池,燃料电池和超级电容器)与高压电动机驱动总线之间的接口,高强度放电(HID)常规的升压转换器不适用于这种高压升压应用,因为它不能最佳地设计为以高效率工作。在所提出的转换器电路中,耦合电感升压转换器被交错。实际的耦合电感升压转换器中存在的漏感会在开关上引起高压应力,并在转换器电路中造成重大损失。在这项工作中,提出了一种通用的有源钳位电路,以将交错转换器的开关上的电压应力限制在较低水平。交错转换器的泄漏能量收集在单个电容器中,并循环至输出。由于回收的泄漏能量,开关电压应力的降低,输出二极管反向恢复问题的缓解以及耦合电感升压转换器的交错,提出的多相转换器实现了高效率。

著录项

  • 作者

    Dwari, Suman.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号