首页> 外文学位 >Advanced modeling for small glass furnaces.
【24h】

Advanced modeling for small glass furnaces.

机译:小型玻璃熔炉的高级建模。

获取原文
获取原文并翻译 | 示例

摘要

One of the most pressing issues facing the glass industry is improving energy efficiency. The largest energy user in any glass company is the melting furnace or furnaces. While large float glass and container glass companies have developed sophisticated control systems, little work has been done until recently for small glass furnaces. This thesis extends the work of Holladay (2005), in which an observer was developed to estimate the temperature of glass in a small day-tank furnace. The current work eliminates the assumption of homogeneous glass melt and refractory temperatures, and develops a furnace model suitable for implementation with a real-time controller.;A state space model of an end-fired furnace was developed in which the furnace was divided longitudinally into two zones. Zone 1 contains the burner flame "cylinder", while Zone 2 is beyond the end of the flame cylinder. Separate states are identified for the temperatures of the refractory in the crown, the walls above the glass melt, the walls adjacent to the two primary melt zones, and the floor of the furnace. The furnace ends are also divided into similar zones constituting discrete states. The glass melt itself contains a thin, surface layer and two thicker layers of stratification. In all, 24 state variables are included in the model. The inputs are the net thermal power provided by the flame and the ambient temperature.;Simulations were performed in Simulink and Matlab and were used to predict the temperatures of all 24 state variables. The results were verified using data collected from a similar tank furnace at Fenton Art Glass Company. The results showed a significant stratification in the vertical axis of the furnace but very nearly uniform temperatures in the length and width directions. The model was used to study various melting strategies. Preliminary results suggest that using the estimated glass temperature and feedback from thermocouples in the wall and floor of the furnace could lead to significant energy savings in the melt cycle. Suggestions are made for using the model within a real-time control system implementable on a small glass furnace.
机译:玻璃行业面临的最紧迫的问题之一是提高能源效率。任何玻璃公司中最大的能源使用者是一个或多个熔炉。大型浮法玻璃和集装箱玻璃公司已经开发出复杂的控制系统,但是直到最近,小型玻璃熔炉的工作仍很少。本论文扩展了Holladay(2005)的工作,在该工作中,开发了一个观察器来估算小型日罐式窑炉中的玻璃温度。当前的工作消除了假设的玻璃熔体和耐火材料温度均一的情况,并开发了适合于使用实时控制器实施的熔炉模型。研制了端燃炉的状态空间模型,其中将熔炉纵向分为两个区域。区域1包含燃烧器火焰“气缸”,而区域2超出火焰气缸的末端。对于胎冠中的耐火材料的温度,玻璃熔体上方的壁,与两个主要熔体区域相邻的壁以及炉底,分别确定了状态。炉端也分成构成离散状态的相似区域。玻璃熔体本身包含一个薄的表面层和两个较厚的分层层。该模型总共包含24个状态变量。输入是由火焰提供的净热功率和环境温度。模拟是在Simulink和Matlab中进行的,用于预测所有24个状态变量的温度。使用从Fenton Art Glass Company的类似罐式炉中收集的数据验证了结果。结果显示在炉的垂直轴上有明显的分层,但是在长度和宽度方向上的温度非常接近均匀。该模型用于研究各种熔化策略。初步结果表明,使用估算的玻璃温度以及炉壁和炉底中热电偶的反馈可以在熔体循环中节省大量能源。提出了在可在小型玻璃熔炉上实施的实时控制系统中使用该模型的建议。

著录项

  • 作者

    Morris, Heath A.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.M.E.
  • 年度 2007
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号