首页> 外文学位 >High-power, high-bandwidth, high-temperature long-wavelength vertical-cavity surface-emitting lasers.
【24h】

High-power, high-bandwidth, high-temperature long-wavelength vertical-cavity surface-emitting lasers.

机译:高功率,高带宽,高温长波长垂直腔面发射激光器。

获取原文
获取原文并翻译 | 示例

摘要

Access, metro-area, and storage-area network technologies are undergoing a remarkable transition from copper and cable-based to fiber-based architectures. In order for fiber-based technologies to penetrate the lucrative market termed the 'last mile,' the optoelectronic component must be simple and inexpensive to manufacture and perform well over a wide range of rack temperature. Long-wavelength vertical-cavity surface-emitting lasers operating between 1300 nm and 1600 nm present an attractive solution for low-cost optical networks requiring un-cooled sources.; The development of long-wavelength vertical-cavity surface-emitting lasers (LW-VCSELs) capable of transmitting at 10 Gbit/s has been met with significant challenges in the last decade due primarily to low quality Distributed Bragg Reflectors (DBR) in the InP material system and large performance degradation at high temperature due to low gain active regions and carrier leakage out of the active region. Recent advances by several groups demonstrate an evolving maturity in the field, but a significant obstacle remains---high performance single mode device operation at high temperatures over the entire O-band (1260-1360 nm).; This thesis presents design principles intended to optimize the high temperature characteristics of a LW-VCSEL structure and demonstrates the state-of-the-art high temperature performance results for LW-VCSELs operating above 1300nm. By incorporating a tunnel junction current aperture with GaAs-based DBRs, we minimize the thermal impedance and optical loss in our devices and provide ourselves with a solid foundation by which to design for maximum performance at high temperature. We theoretically also analyze the effect of the room temperature gain peak-cavity mode offset on output power, thermal roll-over, threshold current and differential gain in order to maximize the relaxation resonance frequency of our devices at high ambient temperatures.; Fabricated devices demonstrate greater than 2 mW single mode output power at 20°C, 1.5 mW single mode output power at 70°C, 10 GHz 3-dB bandwidth at 20°C, 6 GHz 3-dB bandwidth at 70°C, and a maximum relaxation resonance peak of 8 GHz at 70°C by incorporating a single wafer-bonded GaAs/A1GaAs DBR, a AlInGaAs MQW active region, an InP/AlInAs TJ current aperture, and a TiO2/SiO2 output coupler.
机译:接入,城域和存储区域网络技术正经历着从基于铜缆和电缆的架构到基于光纤的架构的显着过渡。为了使基于光纤的技术渗透到被称为“最后一英里”的有利可图的市场,光电组件必须简单,廉价地制造,并在广泛的机架温度范围内保持良好性能。工作在1300nm至1600nm之间的长波长垂直腔面发射激光器为需要未冷却光源的低成本光学网络提供了一种有吸引力的解决方案。在过去的十年中,由于InP中的低质量分布式布拉格反射器(DBR),使得能够以10 Gbit / s传输的长波长垂直腔面发射激光器(LW-VCSEL)的发展面临着重大挑战。由于低增益有源区和载流子从有源区泄漏,材料系统和高温下的大性能下降。几个小组的最新进展证明了该领域的发展日趋成熟,但仍然存在很大的障碍-在整个O波段(1260-1360 nm)的高温下高性能单模器件的运行。本文提出了旨在优化LW-VCSEL结构的高温特性的设计原理,并论证了在1300nm以上工作的LW-VCSEL的最新高温性能结果。通过将隧道结电流孔径与基于GaAs的DBR结合在一起,我们可以将器件中的热阻抗和光损耗降至最低,并为在高温下实现最佳性能提供了坚实的基础。从理论上讲,我们还分析了室温增益峰腔模式失调对输出功率,热翻转,阈值电流和差分增益的影响,以使我们的器件在高温环境下的弛豫共振频率最大化。预制器件展示出在20°C时大于2 mW的单模输出功率,在70°C时大于1.5 mW的单模输出功率,20°C时10 GHz的3-dB带宽,70°C时6 GHz的3-dB带宽以及通过结合单个晶片键合的GaAs / AlGaAs DBR,AlInGaAs MQW有源区,InP / AlInAs TJ电流孔径和TiO2 / SiO2输出耦合器,在70°C时可获得8 GHz的最大弛豫共振峰。

著录项

  • 作者

    Mehta, Manish.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号