首页> 外文学位 >Non-invasive Assessments of Cutaneous Injury Caused by High Voltage Electrical Injury: Experiments and Simulations.
【24h】

Non-invasive Assessments of Cutaneous Injury Caused by High Voltage Electrical Injury: Experiments and Simulations.

机译:高压电伤害造成的皮肤伤害的非侵入性评估:实验和模拟。

获取原文
获取原文并翻译 | 示例

摘要

Research on tissue injury following high-voltage shock is needed and helps reduce amputation rate. This thesis performed an overall assessment, on pathophysiological and thermal responses, of skin under different dosages of direct-current high-voltage electrical shock, through experiments and simulations.;In vivo experiments were conducted to investigate the viability of rat skin tissues distant to the wounds following 1,000 VDC at 2, 4, 8, and 20 seconds. Electrical injuries were created with an accurate custom-made shock system. A Spatial Frequency Domain Imaging (SFDI) system was built to assess physiological parameters of the skin tissues, including tissue oxygen saturation (SO2), met-hemoglobin volume fraction (MetHB), and hemoglobin volume fraction (HB). After shocks, all groups showed increases in HB and MetHB, and decreases in SO2. Especially, a significant reduction of SO2 and a remarkable build-up of MetHB were found in 20-second group, revealing an irreversible skin damage and blood stasis. This correlated to the descent of blood perfusion, measured by a Laser Doppler Imaging machine.;Additionally, a novel finite element model was successfully generated to simulate similar shocks on a 3D rat, including major internal organs with temperature-dependent blood perfusions. Simulation and experimental skin temperature showed a good match, with <5% of percentage error. Skin thermal damage calculation indicated a 2nd degree burn in 20-second group. Predicted tissue damage combined with pathophysiological changes provides a systemic explanation for high-voltage electrical injury. The model also allows evaluating thermal damage of other tissues.;This novel application of SFDI in burn wound assessment was utilized to recognize infected burn wounds in a controlled in vivo rat model. Statistical calculation showed significant differences in optical properties between infected and controlled groups from day 4 (p<0.05). This work will help in early detection of burn wound infection to reduce systemic complications.;In this thesis, I also proposed a novel practical correction method aimed at minimizing the limitation of SFDI in imaging curved surfaces. This method applied a 3D printing technique combined with an accurate 3D imaging method for phantom reconstruction with any shape. Phantom tests showed remarkable improvements especially for complex structures. This can also be applied to other spectral imaging modalities.
机译:需要研究高压电击后的组织损伤,并有助于降低截肢率。本文通过实验和模拟对皮肤在不同剂量的直流高压电击下的病理生理和热反应进行了总体评估。进行了体内实验,研究了远离皮肤的大鼠皮肤组织的活力。在2、4、8和20秒时在1,000 VDC之后伤口。电气伤害是由精确的定制冲击系统造成的。建立了空间频域成像(SFDI)系统,以评估皮肤组织的生理参数,包括组织氧饱和度(SO2),血红蛋白体积分数(MetHB)和血红蛋白体积分数(HB)。休克后,所有组的HB和MetHB均升高,而SO2降低。特别是,在20秒组中发现SO2显着减少和MetHB显着堆积,显示出不可逆的皮肤损伤和血瘀。这与通过激光多普勒成像仪测量的血液灌注下降有关。此外,成功生成了一种新颖的有限元模型来模拟3D大鼠的类似电击,包括具有温度依赖性血液灌注的主要内部器官。模拟和实验皮肤温度显示出良好的匹配度,误差小于5%。皮肤热损伤计算表明在20秒组中有2度烧伤。预测的组织损伤与病理生理变化的结合为高压电损伤提供了系统的解释。该模型还可以评估其他组织的热损伤。SFDI在烧伤创面评估中的这种新颖应用被用于识别受控制的体内大鼠模型中的感染烧伤创面。统计计算显示,从第4天起,感染组和对照组之间的光学特性存在显着差异(p <0.05)。这项工作将有助于及早发现烧伤创面感染,以减少系统性并发症。本文还提出了一种新颖的实用校正方法,旨在最大程度地减少SFDI在成像曲面中的局限性。该方法将3D打印技术与精确的3D成像方法结合使用,可以进行任何形状的幻像重建。幻影测试显示出显着的改进,尤其是对于复杂的结构。这也可以应用于其他光谱成像模态。

著录项

  • 作者

    Nguyen, Thu Thi Anh.;

  • 作者单位

    The Catholic University of America.;

  • 授予单位 The Catholic University of America.;
  • 学科 Engineering Electronics and Electrical.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号