首页> 外文学位 >Stable isotopes from methane and hydrogen sulfide in gas hydrates as source signatures: Influence of clay minerals, biosurfactants, and salts on isotopic selectivity.
【24h】

Stable isotopes from methane and hydrogen sulfide in gas hydrates as source signatures: Influence of clay minerals, biosurfactants, and salts on isotopic selectivity.

机译:来自气体水合物中甲烷和硫化氢的稳定同位素作为源标记:粘土矿物,生物表面活性剂和盐对同位素选择性的影响。

获取原文
获取原文并翻译 | 示例

摘要

Complex physical and chemical interactions between encaged molecules and hydrate-hosting sediments during hydrate formation complicate the use of stable isotopes as source signatures. In this study, hydrates containing methane and hydrogen sulfide are formed in a pressure vessel in order to explore the effects of 1) sodium chloride (NaCl) and magnesium sulfate heptahydrate (MgSO4·7H2O), and 2) smectite clays and biosurfactants on the fractionation of stable isotopes of carbon (δ13C CH4) and hydrogen (δ2HCH4) in methane and of sulfur in hydrogen sulfide (δ34SH2S). Experiments with NaCl and MgSO4·7H2O solutions show less than 1 per mil difference in values of δ13C CH4 and up to 6.5 per mil difference in values of δ2H CH4 for free and encaged molecules. Experiments with hydrogen sulfide in similar solutions show up to 4 per mil difference in values of δ 34SH2S for free and encaged molecules, but up to 14 per mil difference between dissolved and either free molecules or encaged molecules. In experiments with methane hydrates formed from solutions in contact with smectite clays or containing biosurfactants, the difference in values of δ13CCH4 between free and encaged molecules is less than 1 per mil, whereas the difference in values of δ 2HCH4 are up to 10 per mil between free and encaged molecules. In addition, efficiency of methane consumption increased in methane hydrates formed from solutions containing biosurfactants alone or biosurfactant-smectite mixtures. In the presence of NaCl and MgSO4·7H2O salts, smectite clays, and biosurfactants, isotopic fractionation indicated by δ13CCH4 and δ2H CH4 in free and encaged molecules are small and do not complicate interpretations of gas origin. Conversely, in hydrate systems containing hydrogen sulfide molecules, values of δ34SH2S need to be interpreted with caution. Moreover, enhanced consumption of methane in hydrates formed in association with biosurfactant solutions modifies gas wetness, compromising interpretations of gas origin and thermal maturity. Small-vessel pressure experiments demonstrate unexpected complexity in fractionation of stable isotopes during formation of hydrates, complicating the interpretation of source signatures during hydrocarbon exploration and the assessment of biosignatures in other planetary bodies.
机译:水合物形成过程中,被包裹分子与水合物赋存沉积物之间复杂的物理和化学相互作用使稳定同位素作为源特征的使用变得复杂。在这项研究中,在压力容器中形成了含有甲烷和硫化氢的水合物,以研究1)氯化钠(NaCl)和七水硫酸镁(MgSO4·7H2O),以及2)绿土粘土和生物表面活性剂对分馏的影响。甲烷中的碳(δ13CCH4)和氢(δ2HCH4)的稳定同位素以及硫化氢(δ34SH2S)中的硫的稳定同位素用NaCl和MgSO4·7H2O溶液进行的实验表明,游离分子和包裹分子的δ13CCH4值差异每密耳小于1,而每milδ2HCH4值差异最高6.5每密耳。在相似溶液中使用硫化氢进行的实验显示,游离分子和包裹分子的δ34SH2S值最多相差4 mil,但是溶解分子和游离分子或包裹分子之间的mil差高达14 / mil。在由与蒙脱石粘土接触或含有生物表面活性剂的溶液中形成的甲烷水合物的实验中,游离分子和包封分子之间的δ13CCH4值差异小于1密耳,而δ2HCH4的差异高达10密耳/密耳。游离的分子另外,由单独包含生物表面活性剂或生物表面活性剂-蒙脱石混合物形成的甲烷水合物的甲烷消耗效率提高。在存在NaCl和MgSO4·7H2O盐,蒙脱石粘土和生物表面活性剂的情况下,由δ13CCH4和δ2HCH4表示的游离分子和包裹分子中的同位素分馏很小,不会使气体来源的解释复杂化。相反,在含有硫化氢分子的水合物系统中,δ34SH2S的值需要谨慎解释。此外,与生物表面活性剂溶液结合形成的水合物中甲烷的消耗量增加,会改变气体的湿度,损害对气体来源和热成熟度的解释。小容器压力实验表明,在水合物形成过程中稳定同位素的分级分离出乎意料的复杂性,这使烃类勘探过程中的源特征解释和其他行星体生物特征的评估变得复杂。

著录项

  • 作者

    Carvajal-Ortiz, Humberto.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Geology.;Geochemistry.;Petroleum Geology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号