首页> 外文学位 >Coupling of hydrodynamic and wave models for storm tide simulations: A case study for Hurricane Floyd (1999).
【24h】

Coupling of hydrodynamic and wave models for storm tide simulations: A case study for Hurricane Floyd (1999).

机译:风暴潮模拟的水动力模型和波浪模型的耦合:飓风弗洛伊德(1999)的案例研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents the development of a two-dimensional St. Johns River model and the coupling of hydrodynamic and wave models for the simulation of storm tides. The hydrodynamic model employed for calculating tides and surges is ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated) developed by Luettich et al. (1992). The finite element based model solves the fully nonlinear shallow water equations in the generalized wave continuity form. Hydrodynamic applications are operated with the following forcings: (1) astronomical tides, (2) inflows from tributaries, (3) meteorological effects (winds and pressure), and (4) waves (wind-induced waves). The wave model applied for wind-induced wave simulation is the third-generation SWAN (Simulating WAves Nearshore), applicable to the estimation of wave parameters in coastal areas and estuaries. The SWAN model is governed by the wave action balance equation driven by wind, sea surface elevations and current conditions (Holthuijsen et al. 2004).; The overall work is comprised of three major phases: (1) To develop a model domain that incorporates the entire East Coast of the United States, Gulf of Mexico and Caribbean Sea, while honing in on the St. Johns River area; (2) To employ output from the SWAN model with the ADCIRC model and produce a uni-directional coupling of the two models in order to investigate the effects of the wave radiation stresses; (3) To couple the ADCIRC model with the SWAN model to describe the complete interactions of the two physical processes.; Model calibration and comparisons are accomplished in three steps. First, astronomical tide simulation results are calibrated with historical NOS (National Ocean Service) tide data. Second, overland and riverine flows and meteorological effects are included, and computed river levels are compared with the historical NOS water level data. Finally, the storm tides generated by Hurricane Floyd are simulated and compared with historical data. This research results in a prototype for real-time simulation of tides and waves for flash flood and river-stage forecasting efforts of the NWS Forecasting Centers that border coastal areas.; The following two main conclusions are reported: (1) regardless of whether one uses uni-coupling or coupling, wind-induced waves result in an approximately 10--15 % higher peak storm tide level than without any coupling; and (2) the wave-current interaction described by the coupling model results in decreasing peaks and increasing troughs in the storm tide hydrograph. Two main corollary conclusions are also drawn from a 122-day hindcast for the period spanning June 1--October 1, 2005. First, wind forcing for the St. Johns River is equal to or greater than that of astronomic tides and generally supersedes the impact of inflows, while pressure variations have a minimal impact. Secondly, water levels inside the St. Johns River depend on the wind forcings in the deep ocean; however, if one applies an elevation hydrograph boundary condition from a large-scale domain model to a local-scale domain model the results are highly accurate.
机译:本文介绍了二维圣约翰斯河模型的发展以及流体动力学和波浪模型的耦合,用于模拟风暴潮。用于计算潮汐和波动的流体力学模型是Luettich等人开发的ADCIRC-2DDI(用于架子,海岸和河口的先进循环模型,二维深度综合)。 (1992)。基于有限元的模型以广义波连续性形式求解完全非线性的浅水方程。流体动力应用具有以下作用力:(1)天文潮;(2)支流流入;(3)气象效应(风和压力);以及(4)波浪(风感应波)。用于风浪模拟的波浪模型是第三代SWAN(近岸模拟波浪),适用于估计沿海地区和河口的波浪参数。 SWAN模型受风,海平面高程和当前条件驱动的波浪作用平衡方程控制(Holthuijsen等,2004)。总体工作包括三个主要阶段:(1)开发模型域,将美国东海岸,墨西哥湾和加勒比海的整个区域纳入其中,同时在圣约翰斯河地区打磨; (2)将SWAN模型的输出与ADCIRC模型结合使用,并产生两个模型的单向耦合,以研究波辐射应力的影响; (3)将ADCIRC模型与SWAN模型耦合以描述两个物理过程的完整交互。模型校准和比较分三个步骤完成。首先,用历史NOS(国家海洋局)潮汐数据校准天文潮汐模拟结果。其次,包括陆上和河流的流量和气象影响,并将计算出的河流水位与历史NOS水位数据进行比较。最后,模拟了飓风弗洛伊德(Hurricane Floyd)产生的风暴潮并将其与历史数据进行了比较。这项研究的结果是为潮汐和海浪实时模拟提供了一个原型,用于潮汐和潮汐的实时模拟,以及与沿海地区接壤的NWS预报中心的河段预报工作。报告了以下两个主要结论:(1)不管是采用单耦合还是耦合,风浪都会使峰值潮汐水平比没有耦合时高大约10--15%; (2)耦合模型描述的波流相互作用导致风暴潮水文图中的峰值减少和波谷增加。从2005年6月1日至2005年10月1日这一段122天的后预报中也得出了两个主要的推论结论。首先,圣约翰斯河的风力等于或大于天文学的潮汐,通常会取代圣约翰斯河。流入的影响,而压力变化的影响最小。其次,圣约翰斯河内的水位取决于深海中的风力。但是,如果将高程水文边界条件从大型域模型应用于局部域模型,则结果是非常准确的。

著录项

  • 作者

    Funakoshi, Yuji.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Engineering Civil.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号