首页> 外文学位 >Ultrafast third-harmonic generation from nanostructured optical thin films and interfaces.
【24h】

Ultrafast third-harmonic generation from nanostructured optical thin films and interfaces.

机译:由纳米结构的光学薄膜和界面产生超快的三次谐波。

获取原文
获取原文并翻译 | 示例

摘要

Optical harmonic generation from nanostructured thin films and interfaces was investigated experimentally and theoretically. Sample materials were large band gap optical semiconductors (AlN/GaN), rare earth oxides (NdAlO3 ), and noble metals (Ag). They were examined as solids, nanoparticles, and as hybrid nanocomposites. The goal of the project was to create and characterize high susceptibility, third-order (third-harmonic) materials that relied on nanostructure for an enhanced response. Laser ablation of a microparticle aerosol (LAMA) was used to produce these materials. Two routes to nanostructured materials were investigated. In the first method, a microparticle aerosol, composed of a small concentration of metal or semiconductor, and a larger amount of glass microparticles, was ablated by a focused excimer laser, and the resultant nanoparticle aerosol was supersonically deposited and sintered. In the second method, a monolayer of silver nanoparticles was deposited by LAMA, and this film was further processed by pulsed laser deposition (PLD) of either a passive glass or active matrix material. Better optical quality was found in the hybrid LAMA/PLD materials. Many optical properties were required for characterization: linear transmission and absorption spectroscopy of plasmon resonances, second-harmonic generation (SHG) for field-enhancement analysis, and fluorescence spectroscopy and fluorescence lifetime experiments provided preliminary data for third-harmonic generation studies. The third-harmonic generation experiments were performed using an ultrafast laser system, and modeling the ultrafast dynamics of harmonic generation showed that pulse breakup occurs in the third-harmonic field. Interfaces were found to produce the harmonics, through cooperative group-velocity and phase mismatching. This uniquely ultrafast effect allowed for z-scan measurements to be simplified and for focusing effects to be eliminated. Using frequency-domain interferometry allowed for the measurement of the absolute phase of a third-harmonic pulse, and for an accurate determination of the third-order susceptibility of AlN. Finally, enhancement of second- and third-harmonic generation in PLD-coated Ag nanoparticle films was found to depend both on the material microstructure and the fundamental laser intensity.
机译:从实验和理论上研究了纳米结构薄膜和界面产生的光谐波。样品材料为大带隙光学半导体(AlN / GaN),稀土氧化物(NdAlO3)和贵金属(Ag)。它们被检查为固体,纳米颗粒和杂化纳米复合材料。该项目的目标是创建并表征依赖纳米结构增强响应的高磁化率三阶(三次谐波)材料。微粒气溶胶(LAMA)的激光烧蚀用于生产这些材料。研究了两种获得纳米结构材料的途径。在第一种方法中,通过聚焦准分子激光烧蚀由低浓度金属或半导体和大量玻璃微粒组成的微粒气溶胶,并超声沉积并烧结所得的纳米微粒气溶胶。在第二种方法中,通过LAMA沉积了一层银纳米颗粒,然后通过无源玻璃或有源基质材料的脉冲激光沉积(PLD)对该膜进行进一步处理。在混合LAMA / PLD材料中发现了更好的光学质量。表征需要许多光学特性:等离振子共振的线性透射和吸收光谱,用于场增强分析的二次谐波产生(SHG),以及荧光光谱和荧光寿命实验为三次谐波产生研究提供了初步数据。使用超快激光系统进行了三次谐波产生实验,对谐波产生的超快动力学进行建模显示,脉冲破裂发生在三次谐波场中。发现接口通过协同基团速度和相位失配产生谐波。这种独特的超快效果可以简化z扫描测量并消除聚焦效果。使用频域干涉测量法可以测量三次谐波脉冲的绝对相位,并可以准确确定AlN的三次磁化率。最后,发现PLD涂层的Ag纳米颗粒薄膜中第二和第三谐波产生的增强取决于材料的微观结构和基本的激光强度。

著录项

  • 作者

    Stoker, David Stevens.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Health Sciences Pharmacy.; Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 药剂学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号