首页> 外文学位 >Simulation on the welding process of low-alloy steel by finite element method.
【24h】

Simulation on the welding process of low-alloy steel by finite element method.

机译:低合金钢焊接过程的有限元模拟。

获取原文
获取原文并翻译 | 示例

摘要

After more than 30 years of development, Computational Weld Mechanics (CWM) has made a tremendous progress. The objective of this thesis is to focus on the development of more accurate algorithms that capture more physics while requiring less computer time.; Due to the limited capacity (speed and memory) of computers, simulation of large complex welding structures is usually not satisfactory. This thesis aims at computing physical changes in long welds, especially during the quasi-steady state period.; In this work, a weld pool model is proposed to compute the surface geometry of the molten pool as well as a temperature distribution in the weld pool region. The temperature field in the weld joint is computed by solving a convective-diffusion heat equation, based upon the space-time finite element method which can deal with both transient and steady state. The model for evolution of microstructures in low-alloy steels is implemented for both an Eulerian formulation and a Lagrangian formulation. The results from the microstructure analysis, such as specific volume and phase fractions, can be used in stress analysis to capture the effects of volume change during phase change on the stress states. In thermal-stress analysis, a flow tube model, which possesses features from both the Lagrangian formulation and the Eulerian formulation, is developed to predict the steady-state stress and displacement fields in the weld joint domain. A thermal-elasto-viscoplastic constitutive relationship, with consideration of transformation plasticity, is applied.; All these analyses are coupled by data flows to incorporate interactions between the thermal, mechanical and metallurgical processes present in the welds. The input data for the analysis included geometry, material properties, initial temperature field, initial microstructure states, base metal and filler metal compositions, initial stress and strain states, and boundary conditions appropriate for the problem analyzed. Numerical results are compared with experimental, analytic or other numerical results.
机译:经过30多年的发展,计算焊接力学(CWM)取得了巨大进步。本文的目的是着重于开发更精确的算法,该算法可捕获更多物理,同时需要更少的计算机时间。由于计算机的容量(速度和内存)有限,因此大型复杂焊接结构的模拟通常不能令人满意。本文旨在计算长焊缝的物理变化,特别是在准稳态期间。在这项工作中,提出了一个熔池模型来计算熔池的表面几何形状以及熔池区域中的温度分布。基于时空有限元方法,可以求解瞬态和稳态,通过求解对流扩散热方程来计算焊接接头的温度场。针对欧拉公式和拉格朗日公式均实现了低合金钢中微观组织演变的模型。微结构分析的结果(例如比体积和相分数)可用于应力分析,以捕获相变过程中体积变化对应力状态的影响。在热应力分析中,建立了具有拉格朗日公式和欧拉公式特征的流管模型,以预测焊接接头域中的稳态应力和位移场。考虑到可塑性,采用了热弹-粘塑性本构关系。所有这些分析都与数据流耦合在一起,以纳入焊缝中存在的热,机械和冶金过程之间的相互作用。分析的输入数据包括几何形状,材料特性,初始温度场,初始微观结构状态,贱金属和填充金属成分,初始应力和应变状态以及适合于所分析问题的边界条件。将数值结果与实验,分析或其他数值结果进行比较。

著录项

  • 作者

    Wang, Shaodong.;

  • 作者单位

    Carleton University (Canada).;

  • 授予单位 Carleton University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号