首页> 外文学位 >In situ (Scanning) Transmission Electron Microscope Observations of Energy Storage Nanostructures During Synthesis and Battery Operation.
【24h】

In situ (Scanning) Transmission Electron Microscope Observations of Energy Storage Nanostructures During Synthesis and Battery Operation.

机译:合成和电池运行过程中储能纳米结构的原位(扫描)透射电子显微镜观察。

获取原文
获取原文并翻译 | 示例

摘要

Achieving precise control over nanostructure evolution during synthesis is essential for creating next-generation nanomaterials with individually tailored properties. The first step in finely controlling the synthesis process of a nanostructure is to observe, measure and understand its growth mechanisms in detail, from the initial stages to the final product. However, due to limitations in the characterization techniques for liquid-solid systems, the prevalent approach to developing new nanostructures is largely a trial and error process of iteratively altering synthesis procedures and then characterizing the resulting nanostructures. This is fundamentally limited in that the growth processes that occur during synthesis can only be inferred from the final synthetic structure. Alternatively, directly observing real-time nanostructure growth within the synthesis environment could provide unprecedented insight into the relationship between synthesis conditions and product evolution, and facilitate a more rapid and systematic approach to nanostructure development.;In this dissertation, the recently developed in situ liquid stage is used in the (scanning) transmission electron microscope ((S)TEM) to observe the real-time growth of mesoporous Pd nanostructures during synthesis within several organic micelle templates. The in situ (S)TEM results are used to identify Pd growth mechanisms that contribute to the disorder of the final pore structure, and to suggest possible ways of augmenting the template in order to improve its efficacy in directing the growth of ordered nanostructures. By observing in situ growth for various synthesis conditions, a refined synthesis procedure, which yields ordered pore structures, is ultimately determined.;This ability to observe dynamic nanoscale liquid-solid systems in situ is essential for not only understanding the growth mechanisms during nanostructure synthesis, but also for understanding the processes that occur during the electrochemical operation of Li-ion batteries, such as electrode lithiation/delithiation and the formation of the solid electrolyte interphase (SEI), which strongly correlate with battery performance. By expanding upon the commercially available in situ liquid (S)TEM stage, a novel in operando nanobattery platform ("closed-cell") is developed to study the behavior of Li-ion battery electrodes and battery-relevant liquid electrolytes during electrochemical biasing. The structural evolution of a single Si nanowire, fully immersed in electrolyte, is observed in operando during electrochemical charging and discharging with controlled battery operating conditions, demonstrating the proof of concept and the unique capacity for fundamental battery research using this platform.
机译:在合成过程中实现对纳米结构演化的精确控制对于创建具有个性化定制特性的下一代纳米材料至关重要。精细控制纳米结构合成过程的第一步是详细观察,测量和了解从初始阶段到最终产品的生长机制。但是,由于液固体系表征技术的局限性,开发新的纳米结构的普遍方法主要是反复试验,反复改变合成程序,然后表征所得的纳米结构。这从根本上受到限制,因为只能从最终的合成结构推断合成期间发生的生长过程。另外,直接观察合成环境中的实时纳米结构的生长可以为合成条件和产物演化之间的关系提供空前的见识,并为纳米结构的发展提供更快速,系统的方法。 (扫描)透射电子显微镜((S)TEM)中使用了这一阶段,以观察几种有机胶束模板在合成过程中中孔Pd纳米结构的实时生长。原位(S)TEM结果用于鉴定导致最终孔结构紊乱的Pd生长机制,并提出增加模板的可能方法,以提高其指导有序纳米结构生长的功效。通过观察各种合成条件下的原位生长,最终确定了产生有序孔结构的精细合成程序。这种观察原位动态纳米级液-固系统的能力不仅对于了解纳米结构合成过程中的生长机理至关重要。还可以理解锂离子电池电化学操作过程中发生的过程,例如电极锂化/脱锂和形成固态电解质中间相(SEI),这些过程与电池性能密切相关。通过扩展可商购的原位液体(S)TEM阶段,开发了一种新型的操作纳米电池平台(“闭孔”)来研究锂离子电池电极和电池相关的液体电解质在电化学偏压下的行为。在受控的电池工作条件下进行电化学充电和放电期间,在操作过程中观察到了完全浸入电解质中的单根Si纳米线的结构演变,这证明了概念验证和使用该平台进行基础电池研究的独特能力。

著录项

  • 作者

    Parent, Lucas Robert.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Nanoscience.;Engineering Materials Science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号