首页> 外文学位 >A study on the role of grain boundary engineering in promoting high-cycle fatigue resistance and improving reliability in nickel base superalloys for propulsion systems.
【24h】

A study on the role of grain boundary engineering in promoting high-cycle fatigue resistance and improving reliability in nickel base superalloys for propulsion systems.

机译:晶界工程在推进系统的镍基高温合金中促进高循环疲劳强度和提高可靠性方面的作用的研究。

获取原文
获取原文并翻译 | 示例

摘要

High-cycle fatigue, involving the premature initiation and/or rapid propagation of small cracks to failure due to high-frequency (vibratory) loading, remains the principal cause of failures in military gas-turbine propulsion systems. The objective of this study is to examine whether the resistance to high-cycle fatigue failures can be enhanced by grain-boundary engineering, i.e., through the modification of the spatial distribution and topology of the grain boundaries in the microstructure. While grain boundary engineering has been used to obtain significant improvements in intergranular corrosion and cracking, creep and cavitation behavior, toughness and plasticity, cold-work embrittlement, and weldability, only very limited, but positive, results exist for fatigue. Accordingly, using a commercial polycrystalline nickel base gamma/gamma' superalloy, ME3, as a typical engine disk material, sequential thermomechanical processing, involving alternate cycles of strain and annealing, is used to (i) modify the proportion of special grain boundaries, and (ii) interrupt the connectivity of the random boundaries in the grain boundary network.; The processed microstructures are then subjected to fracture-mechanics based high cycle fatigue testing to evaluate how the crack initiation and small- and large-crack growth properties are affected and to examine how the altered grain boundary population and connectivity can influence growth rates and overall lifetimes.; The effect of such grain-boundary engineering on the fatigue-crack-propagation behavior of large (∼8 to 20 mm), through-thickness cracks at 25, 700, and 800°C was examined. Although there was little influence of an increased special boundary fraction at ambient temperatures, the resistance to near-threshold crack growth was definitively improved at elevated temperatures, with fatigue threshold-stress intensities some 10 to 20% higher than at 25°C, concomitant with a lower proportion (∼20%) of intergranular cracking. This work demonstrated that for cracks large compared to the scale of the microstructure, the principal role of an increased fraction of "special" grain boundaries is to enhance resistance only to intergranular cracking.; Microstructurally small fatigue cracks exhibit considerably scattered growth rates at ambient temperatures and there is little discernible overall effect of an increased fraction of special boundaries on the growth rates of small cracks due to scattering. Crystallographic cracking shows deflection at grain boundaries, preferably along {lcub}111{rcub}. The analysis on the crack growth perturbation and crack deflection indicates that grain boundaries with higher misorientation angles, particularly twin boundaries (Sigma3), may be more effective in locally retarding small crack propagation.
机译:高周疲劳,包括由于高频(振动)载荷而导致的小裂纹的过早萌生和/或快速扩展到故障,一直是军用燃气轮机推进系统故障的主要原因。这项研究的目的是检验是否可以通过晶界工程,即通过改变微观结构中晶界的空间分布和拓扑结构来增强对高周疲劳失效的抵抗力。尽管已经使用晶界工程技术来改善晶粒间腐蚀和破裂,蠕变和气蚀行为,韧性和可塑性,冷作脆性和可焊接性,但是仅有非常有限但积极的疲劳结果。因此,使用市售的多晶镍基γ/γ'超级合金ME3作为典型的发动机盘材料,采用连续的热机械加工(包括应变和退火的交替循环)来(i)修改特殊晶界的比例,以及(ii)中断晶粒边界网络中随机边界的连通性;然后对加工后的微结构进行基于断裂力学的高周疲劳测试,以评估裂纹萌生以及小裂纹和大裂纹生长特性如何受到影响,并检查改变的晶界人口和连通性如何影响生长速率和总寿命。;研究了这种晶界工程对在25、700和800°C下大(约8至20 mm),全厚度裂纹的疲劳裂纹扩展行为的影响。尽管在环境温度下几乎没有特殊边界分数增加的影响,但在高温下,对近阈裂纹扩展的抵抗力得到了显着提高,疲劳极限应力强度比25°C时高出约10%到20%,较低的晶间裂纹比例(约20%)。这项工作表明,与微观结构相比,对于较大的裂纹,增加“特殊”晶界份额的主要作用是仅增强对晶间裂纹的抵抗力。微观结构的小疲劳裂纹在环境温度下表现出相当大的分散增长率,由于散射,特殊边界的增加对小裂纹的生长速率几乎没有明显的总体影响。晶体学裂纹显示出在晶界处的挠曲,优选地沿着{lcub} 111 {rcub}。对裂纹扩展摄动和裂纹挠度的分析表明,具有较高取向差角的晶界,尤其是孪晶界(Sigma3),可能在局部抑制小裂纹扩展方面更为有效。

著录项

  • 作者

    Gao, Yong.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.; Engineering Metallurgy.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;冶金工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号