首页> 外文学位 >A distributed power delivery and decoupling network minimizing ohmic loss and supply voltage variation in silicon nanoscale technologies.
【24h】

A distributed power delivery and decoupling network minimizing ohmic loss and supply voltage variation in silicon nanoscale technologies.

机译:分布式功率传输和去耦网络可将硅纳米级技术中的欧姆损耗和电源电压变化降至最低。

获取原文
获取原文并翻译 | 示例

摘要

As the transistor count and performance expectations of integrated circuits have grown, their power consumption has approximately doubled every thirty-six months. To minimize power consumption and maintain dielectric reliability, the supply voltage of microprocessors has been scaled down. As the operating voltage decreases, more current is required to meet the growing power requirements. This research addresses two significant problems created by these circumstances, each of which will continue to grow as time (and technology) progresses: IR events and di/dt events.;In an IR event, ohmic losses occur as current flows through an integrated circuit's power delivery path. We have proposed to reduce the ohmic losses in this path by delivering the input power at a higher voltage and lower current. We have developed a step-down power conversion architecture for the integrated circuit to deliver the required operating voltage in a distributed fashion. Each regulation node in the distributed network provides the power necessary for small geographic portions of the die. The distributed regulation nodes can also customize the operating voltages of the integrated circuit's functional blocks allowing optimal power and performance trade-offs.;Changes in operating current over time are known as di/dt events. As operating currents increase, the magnitude of di/dt events will also increase. Parasitic elements in the device's power delivery and decoupling network create three resonant loops, each with its own resonant frequency. di/dt events cause supply voltage variations at these resonant frequencies and adversely affect the integrated circuit's performance. We have proposed to use the distributed regulation nodes to rapidly respond to di/dt events to minimize the three supply voltage variation droops. The proposed power delivery network will also allow designers to minimize the integrated circuit's and system's decoupling capacitance, drastically lowering leakage current and reducing system cost and complexity. Finally, a new device, the carbon nanotube capacitor (CNCAP), has been proposed. This capacitor could allow for a one to two order of magnitude improvement in the capacitance per unit area (compared to conventional integrated capacitors), allowing a completely integrated, regulated distributed power delivery and decoupling network.
机译:随着集成电路的晶体管数量和对性能的期望的提高,它们的功耗每36个月大约增加一倍。为了最小化功耗并保持介电可靠性,微处理器的电源电压已按比例缩小。随着工作电压降低,需要更多电流以满足不断增长的功率要求。这项研究解决了由这些情况造成的两个重大问题,随着时间(和技术)的发展,每个问题都会继续增长:IR事件和di / dt事件。在IR事件中,当电流流过集成电路的电流时会发生欧姆损耗。电力输送路径。我们提出了通过以较高的电压和较低的电流输送输入功率来减少该路径中的欧姆损耗。我们已经为集成电路开发了一种降压电源转换架构,以分布式方式提供所需的工作电压。分布式网络中的每个调节节点都为芯片的较小地理区域提供必要的电源。分布式调节节点还可以自定义集成电路功能块的工作电压,以实现最佳的功率和性能折衷。工作电流随时间的变化被称为di / dt事件。随着工作电流的增加,di / dt事件的幅度也将增加。器件功率传输和去耦网络中的寄生元件会形成三个谐振环路,每个环路都有自己的谐振频率。 di / dt事件会导致电源电压在这些谐振频率上发生变化,并对集成电路的性能产生不利影响。我们建议使用分布式调节节点快速响应di / dt事件,以最小化三个电源电压变化下降。拟议的功率传输网络还将使设计人员能够最大程度地降低集成电路和系统的去耦电容,从而大大降低泄漏电流并降低系统成本和复杂性。最后,提出了一种新的设备,即碳纳米管电容器(CNCAP)。与传统的集成电容器相比,该电容器可以使每单位面积的电容提高一到两个数量级,从而实现完全集成的,可调节的分布式电源传输和去耦网络。

著录项

  • 作者

    Budnik, Mark Michael.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 378 p.
  • 总页数 378
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号