首页> 外文学位 >A viscoelastic-viscoplastic analysis of fiber reinforced polymer composites undergoing mechanical loading and temperature changes.
【24h】

A viscoelastic-viscoplastic analysis of fiber reinforced polymer composites undergoing mechanical loading and temperature changes.

机译:纤维增强聚合物复合材料经受机械载荷和温度变化的粘弹-粘塑性分析。

获取原文
获取原文并翻译 | 示例

摘要

This study presents a combined viscoelastic (VE)-viscoplastic (VP) analysis for Fiber Reinforced Polymer (FRP) composites subject to simultaneous mechanical load and conduction of heat. The studied FRP composites consist of unidirectional fibers, which are considered as linearly elastic with regards to their mechanical response, and isotropic polymeric matrix, which shows viscoelastic-viscoplastic response under various stresses and temperatures. Due to the viscoelastic and viscoplastic behavior of the polymeric matrix, the overall FRP composites exhibit a combined time-dependent and inelastic behavior. A simplified micromechanical model, consisting of a unit-cell with four fiber and matrix subcells, is formulated to homogenize the overall heat conduction and viscoelastic-viscoplastic responses of the FRP composites. The micromechanical model is compatible with a displacement based finite element (FE) and is implemented at the Gaussian integration points within the continuum finite elements, which is useful for analyzing the overall time-dependent response of FRP composite structures under various boundary conditions. The Schapery nonlinear integral model combined with the Perzyna viscoplastic model is used to describe the viscoelastic-viscoplastic response of the polymer constituents. An integrated time integration algorithm is formulated at the micromechanics level in order to solve the nonlinear viscoelastic-viscoplastic constitutive model at the matrix subcells and obtain the overall nonlinear response of the FRP. The viscoelastic-viscoplastic micromechanical model is validated usingexperimental data on off-axis glass/epoxy FRP composites available in literature. The overall response of the FRP composites determined from the simplified micromechanical model is also compared with the ones generated from microstructures of FRP with various fiber arrangements dispersed in homogeneous polymer matrix. The microstructural models of the FRP with detailed fiber arrangements are generated using FE. The effects of thermal stresses, due to the mismatches in the coefficient of thermal expansions of the fibers and polymeric matrix, and stress concentrations/discontinuities near the fiber and matrix interfaces on the overall thermo-mechanical deformation of FRP composites are studied using the two micromechanical models discussed above. Finally, an example of structural analysis is performed on a polymeric smart sandwich composite beam, having FRP skins and polymeric foam core with piezoelectric sensors integrated to the FRP skins, undergoing three point bending at an elevated temperature. The creep displacement is compared to experimental data available in literature.
机译:这项研究提出了同时经受机械载荷和热传导的纤维增强聚合物(FRP)复合材料的粘弹性(VE)-粘塑性(VP)组合分析。所研究的FRP复合材料由单向纤维和各向同性聚合物基体组成,该单向纤维在其机械响应方面被视为线性弹性,而各向同性聚合物基体则在各种应力​​和温度下均表现出粘弹-粘塑性响应。由于聚合物基体的粘弹性和粘塑性行为,整个FRP复合材料都表现出时间依赖性和非弹性行为的组合。建立了简化的微机械模型,该模型由具有四个纤维和基质子单元的单元单元组成,以使FRP复合材料的整体导热和粘弹-粘塑性响应均匀化。该微机械模型与基于位移的有限元(FE)兼容,并在连续有限元内的高斯积分点实现,这对于分析FRP复合结构在各种边界条件下的整体时效响应非常有用。将Schapery非线性积分模型与Perzyna粘塑性模型相结合来描述聚合物成分的粘弹-粘塑性响应。为了解决矩阵子单元上的非线性粘弹-粘塑性本构模型并获得FRP的整体非线性响应,在微力学层面制定了集成时间积分算法。使用文献中提供的离轴玻璃/环氧树脂FRP复合材料的实验数据验证了粘弹-粘塑性微力学模型。由简化的微机械模型确定的FRP复合材料的整体响应也与由FRP的微结构产生的响应相比较,FRP的微结构具有分散在均质聚合物基质中的各种纤维排列。使用FE生成具有详细纤维排列的FRP的微观结构模型。使用这两种微力学方法研究了由于纤维和聚合物基体的热膨胀系数不匹配以及纤维和基体界面附近的应力集中/间断点对玻璃钢复合材料整体热机械变形造成的热应力影响。上面讨论的模型。最后,在具有FRP蒙皮和聚合物泡沫芯的聚合物智能夹芯复合梁上执行结构分析的示例,其中压电传感器集成到FRP蒙皮,并在高温下进行三点弯曲。将蠕变位移与文献中提供的实验数据进行比较。

著录项

  • 作者

    Jeon, Jaehyeuk.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号