首页> 外文学位 >Acoustic bubble: Controlled and selective micropropulsion and chemical waveform generator.
【24h】

Acoustic bubble: Controlled and selective micropropulsion and chemical waveform generator.

机译:声泡:受控和选择性的微推进器和化学波形发生器。

获取原文
获取原文并翻译 | 示例

摘要

The physics governing swimming at the microscale---where viscous forces dominate over inertial---is distinctly different than that at the macroscale. Devices capable of finely controlled swimming at the microscale could enable bold ideas such as targeted drug delivery, non-invasive microsurgery, and precise materials assembly. Progress has already been made towards such artificial microswimmers using several means of actuation: chemical reactions and applied magnetic, electric or acoustic fields. However, the prevailing goal of selective actuation of a single microswimmer from within a group, the first step towards collaborative, guided action by a group of swimmers, has so far not been achieved. Here I present a new class of microswimmer that accomplishes for the first time selective actuation (Chapter 1). The swimmer design eschews the commonly-held design paradigm that microswimmers must use non-reciprocal motion to achieve propulsion; instead, the swimmer is propelled by oscillatory motion of an air bubble trapped within the swimmer's polymer body. This oscillatory motion is driven by a low-power biocompatible acoustic field to the ambient liquid, with meaningful swimmer propulsion occurring only at resonance frequencies of the bubble. This acoustically-powered microswimmer performs controllable rapid translational and rotational motion even in highly viscous liquid. By using a group of swimmers each with a different bubble size (and thus different resonance frequencies) selective actuation of a single swimmer from among the group can be readily achieved.;Cellular response to chemical microenvironments depends on the spatiotemporal characteristics of the stimulus, which is central to many biological processes including gene expression, cell migration, differentiation, apoptosis, and intercellular signaling. To date, studies have been limited to digital (or step) chemical stimulation with little control over the temporal counterparts. Microfluidic approaches have offered a higher level of sophistication in terms of liquid manipulation, however, due to low Reynolds number associated with these methods, precise temporal manipulation has remained a challenge. Furthermore, varying the sample concentration rapidly and controllably, an important task for a plethora of chemical and biological studies, has proven to be extremely difficult. Here I demonstrate (Chapter 3) a novel approach for generating chemical waveforms that permits continuous modulation of the signal characteristics including the shape, frequency, amplitude (sample concentration), and duty cycle, with frequencies reaching up to 30 Hz. Furthermore, using multiple bubbles of different sizes in a single microchannel, we show fast switching between multiple distinct stimuli, wherein the waveform of each stimulus is independently controlled. Using our device, we characterized the frequency-dependent activation and internalization of the -adrenergic receptor (beta2-AR), a prototypic G-protein coupled receptors (GPCRs) due to epinephrine. We determined that beta2-AR internalization due to epinephrine occurs on timescales between 100 ms and 5sec. The chemical waveform generation and switching method presented herein is expected to be useful for understanding the dynamics of fast biomolecular processes.
机译:在微观尺度上控制游泳的物理学-粘滞力在惯性上占主导地位-与宏观尺度的游泳显着不同。能够在微尺度上精细控制游泳的设备可以实现大胆的构想,例如靶向药物输送,无创显微外科手术和精确的材料组装。使用多种致动方式的人造微游泳器已经取得了进展:化学反应和施加的磁场,电场或声场。然而,到目前为止,尚未实现从一组中选择性地致动单个微游泳者的主要目标,即朝着由一组游泳者进行协同引导动作的第一步。在这里,我介绍了一种新型的微游泳器,它是首次实现选择性致动(第1章)。游泳者的设计避开了普遍使用的设计范式,即微游泳者必须使用非往复运动来实现推进。取而代之的是,游泳者是通过捕获在游泳者聚合物体内的气泡的振荡运动来推动的。这种振荡运动是由对周围液体的低功率生物相容性声场驱动的,有意义的游泳者推进仅在气泡的共振频率下发生。即使在高粘性液体中,这种由声波驱动的微型扫频器也可以执行可控的快速平移和旋转运动。通过使用一组游泳者,每个游泳者具有不同的气泡大小(因此具有不同的共振频率),可以很容易地实现对一组游泳者的选择性致动。细胞对化学微环境的反应取决于刺激的时空特性,在许多生物过程中至关重要,包括基因表达,细胞迁移,分化,凋亡和细胞间信号传导。迄今为止,研究仅限于数字(或逐步)化学刺激,对时间对应物几乎没有控制。在流体操作方面,微流体方法提供了更高水平的复杂性,但是,由于与这些方法相关的雷诺数低,精确的时间操作仍然是一个挑战。此外,事实证明,快速而可控地改变样品浓度是极其艰巨的化学和生物学研究的重要任务。在这里,我演示了(第3章)一种生成化学波形的新颖方法,该方法允许对信号特性进行连续调制,包括形状,频率,幅度(样本浓度)和占空比,其频率高达30 Hz。此外,在单个微通道中使用大小不同的多个气泡,我们显示了多个不同刺激之间的快速切换,其中每个刺激的波形均受到独立控制。使用我们的设备,我们表征了肾上腺素导致的-肾上腺素能受体(β2-AR)(原型G蛋白偶联受体(GPCR))的频率依赖性激活和内在化。我们确定由于肾上腺素导致的β2-AR内在化发生在100毫秒至5秒之间的时间范围内。预期本文介绍的化学波形产生和切换方法将有助于理解快速生物分子过程的动力学。

著录项

  • 作者

    Ahmed, Daniel.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering.;Acoustics.;Robotics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号