首页> 外文学位 >Polymer dynamics in microfluidic devices: A Brownian dynamics study.
【24h】

Polymer dynamics in microfluidic devices: A Brownian dynamics study.

机译:微流控设备中的聚合物动力学:布朗动力学研究。

获取原文
获取原文并翻译 | 示例

摘要

Microfluidic processes involve transporting fluids in channels having characteristic dimensions of 10--100 mum. Since most of the components handled in microfluidic processes are biopolymers such as DNA and proteins, understanding polymer dynamics inside microfluidic channels is essential for designing more efficient microfluidic processes. We use Brownian dynamics simulations to study the dynamics of isolated polymer molecules inside microchannels. The polymer is modeled as a set of beads connected by links which can be either springs or rods. Using Brownian dynamics, we have looked at three aspects of polymer dynamics relevant to microfluidics. We studied the stretching and transport of a bead-spring chain in a recirculating electro-osmotic flow which can be generated inside a microchannel and is characterized by an inhomogeneous velocity gradient. This study provides an important extension to previous studies which have looked at polymer dynamics in flows with homogeneous velocity gradients. In another problem, we studied the adsorption of a single polyelectrolyte onto an oppositely charged surface using a bead-rod description for the polymer. We compared adsorption in the absence and presence of a shear flow and found enhanced adsorption in the presence of a shear flow. In contrast to previous simulation studies which have considered only equilibrium aspects of polyelectrolyte adsorption, our study is the first to investigate polyelectrolyte adsorption in the presence of a flow. Using the bead-rod model for a polymer, we also examined the time scales involved in the electrophoresis of a charged polymer through a narrow constriction separating two larger regions. We found that the electrophoresis of the polymer through the constriction is governed by three characteristic time scales. Whereas previous studies have shown the electrophoresis of a polymer to depend on a single time scale, our study demonstrates that more than one time scale can determine its electrophoresis. Our Brownian dynamics studies have contributed to the understanding of polymer dynamics in microchannels and may be useful in designing better microfluidic separation processes. In addition, these studies provide new insights into single polymer dynamics which are relevant to polymer rheology, polyelectrolyte multilayer formation, and DNA dynamics inside biological cells.
机译:微流体过程涉及在特征尺寸为10--100微米的通道中输送流体。由于在微流体过程中处理的大多数组件都是生物聚合物,例如DNA和蛋白质,因此了解微流体通道内部的聚合物动力学对于设计更有效的微流体过程至关重要。我们使用布朗动力学模拟来研究微通道内孤立的聚合物分子的动力学。聚合物被建模为一组通过链接连接的小珠,链接可以是弹簧或棒。使用布朗动力学,我们研究了与微流体相关的聚合物动力学的三个方面。我们研究了在一个微通道内部产生的循环电渗流中珠-弹簧链的拉伸和运输,其特征是速度梯度不均匀。这项研究为以前的研究提供了重要的扩展,以前的研究研究了均相速度梯度下流动中的聚合物动力学。在另一个问题中,我们使用聚合物的珠棒描述研究了单个聚电解质在带相反电荷的表面上的吸附。我们比较了在不存在和存在剪切流的情况下的吸附,发现在存在剪切流的情况下增强了吸附。与以前的模拟研究仅考虑了聚电解质吸附的平衡方面相反,我们的研究是第一个研究在流动存在下聚电解质吸附的研究。使用聚合物的珠棒模型,我们还通过分隔两个较大区域的狭窄缩孔检查了带电聚合物电泳所涉及的时间尺度。我们发现通过缩颈的聚合物电泳受三个特征时间尺度的支配。尽管先前的研究表明聚合物的电泳取决于单个时间范围,但我们的研究表明,一个以上的时间范围可以决定其电泳。我们的布朗动力学研究有助于理解微通道中的聚合物动力学,可能有助于设计更好的微流体分离过程。此外,这些研究为与聚合物流变学,聚电解质多层形成以及生物细胞内部DNA动力学有关的单一聚合物动力学提供了新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号