首页> 外文学位 >A three dimensional immersed boundary-based method for the free and combined convective heat transfer from spherical bodies.
【24h】

A three dimensional immersed boundary-based method for the free and combined convective heat transfer from spherical bodies.

机译:基于三维浸没边界的球体自由对流和组合对流传热的方法。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this study is to develop a relatively simple numerical technique that utilizes a three-dimensional immersed boundary method (IBM) to solve the three dimensional thermal interactions of spherical particles in a fluid. Firstly, the natural convection of an isolated isothermal sphere immersed in a viscous fluid is analyzed and a new correlation for the heat transfer rate is obtained for 0.5≤ Pr ≤200 and 1 ≤ Gr ≤500. The natural convection heat transfer rate and drag coefficients of a pair of spheres (bi-sphere) and spherical clusters immersed in air (Pr=0.72) were also investigated and found to be dependent on the separation between the spheres; an increase in the separation of two spheres in tandem or side-by-side within a certain range enhances the average heat transfer rate. The average heat transfer rate of a cluster of identical spheres with the same Grashof number was found to decrease as the number of spheres increased in a cluster. Furthermore, the mixed convection of a heated sphere at various flow incident angles has also been studied for laminar flows ranging from completely downward (opposing) to completely upward (assisting). Separate treatment for the heat transfer rate is required for the cross flow (at right angles), completely upward flow, and completely upward flow. Finally, the influence of the Grashof number on the settling velocity and heat transfer rate of a single or multiple isothermal spheres settling in a fluid-filled vertical channel has been investigated; an increase in the Grashof number decreases both the settling velocity and heat transfer rate of a single sphere or many spheres in sedimentation.
机译:这项研究的目的是开发一种相对简单的数值技术,该技术利用三维沉浸边界方法(IBM)来解决流体中球形颗粒的三维热相互作用。首先,分析了浸没在粘性流体中的孤立等温球体的自然对流,并获得了传热速率与0.5≤Pr≤200和1≤Gr≤500的新关系。还研究了一对球体(双球体)和浸入空气中的球形团簇的自然对流传热速率和阻力系数(Pr = 0.72),并发现它们取决于球体之间的间距;在一定范围内串联或并排的两个球体的分离度的增加会提高平均传热速率。发现具有相同格拉斯霍夫数的相同球团的平均传热速率随球团数的增加而降低。此外,还研究了层流从完全向下(相对)到完全向上(辅助)的层流在各种流动入射角下的混合对流。对于横流(直角),完全向上流动和完全向上流动,需要对传热速率进行单独处理。最后,研究了格拉斯霍夫数对单个或多个等温球在充满流体的垂直通道中沉降的沉降速度和传热速率的影响。 Grashof数的增加会降低沉降中单个球或多个球的沉降速度和传热速率。

著录项

  • 作者

    Musong, Samuel.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Engineering Mechanical.;Engineering General.
  • 学位 M.S.
  • 年度 2013
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号