首页> 外文学位 >Soft computing approaches for microbial food safety applications.
【24h】

Soft computing approaches for microbial food safety applications.

机译:用于微生物食品安全应用的软计算方法。

获取原文
获取原文并翻译 | 示例

摘要

First, a feedforward error back-propagation neural network (FEBNN) model (classifier) was developed to predict survival and growth of Escherichia coli O157:H7 in response to five environmental conditions (temperature, pH, and concentrations of acetic acid, sucrose and salt). The neural network was trained by using a data set from controlled experiments conducted with a cocktail of five strains of E. coli O157:H7 in tryptic soy broth. It correctly predicted the growth/no-growth in 1810 (99.5%) with 8 false positives and 2 false negatives, and survival/death in 1804 (99.1%) with 13 false positives and 3 false negatives. Thirty data from experimental mayonnaise inoculated with E. coli O157:H7 and two literature data sets (26 conditions) were used for experimental validation. The FEBNN model predicted the survival/death in 27 of 30 cases (90.0% accuracy) with three fail-positive predictions and all observed growth (100%).; In addition, a knowledge-based neural network envelope (KBNNE) using surrogate pathogens was developed to characterize the uncertainty about the probability of infection at an ingested dose level. Eight E. coli O157:H7 outbreak data with fractional animal and surrogates data were combined to build the knowledge-based neural network dose-response (KBNNDR) model. A constant variation of approximate 95% confidence limits of the KBNNDR was made to interpret the uncertainty. A fuzzy rule-based model was developed to characterize the various uncertainty of E. coli O157:H7 dose-response, when the lack of data severely restricted the accuracies of beta-Poisson, KBNNE and KBNNDR models. The fuzzy model provided a set of fuzzy zones. Each fuzzy zone demonstrated the different width of response interval at different dose levels to describe the uncertainty, variability and imprecision of E. coli O157:H7 dose-response.
机译:首先,建立了前馈误差反向传播神经网络(FEBNN)模型(分类器),以预测大肠杆菌O157:H7在五个环境条件(温度,pH值以及乙酸,蔗糖和盐的浓度)下的存活和生长)。通过使用来自在胰蛋白酶解大豆肉汤中五种大肠杆菌O157:H7菌株混合物进行的对照实验的数据集来训练神经网络。它正确地预测了1810年有8个假阳性和2个假阴性的增长/无增长(99.5%),以及1804年有13个假阳性和3个假阴性的生存/死亡(99.1%)。来自用大肠杆菌O157:H7接种的实验蛋黄酱的30个数据和两个文献数据集(26个条件)用于实验验证。 FEBNN模型预测了30例病例中的27例的存活/死亡(准确率90.0%),其中有3项失败呈阳性的预测,所有观察到的增长(100%)。此外,还开发了使用替代病原体的基于知识的神经网络包络(KBNNE),以表征在摄入剂量水平下感染可能性的不确定性。将八份大肠杆菌O157:H7暴发数据与部分动物数据和代孕数据相结合,以建立基于知识的神经网络剂量反应(KBNNDR)模型。 KBNNDR的大约95%置信范围的恒定变化用于解释不确定性。当缺乏数据严重限制了β-泊松,KBNNE和KBNNDR模型的准确性时,开发了基于模糊规则的模型来表征大肠杆菌O157:H7剂量反应的各种不确定性。模糊模型提供了一组模糊区域。每个模糊区域在不同剂量水平下均表现出不同的响应间隔宽度,以描述大肠杆菌O157:H7剂量反应的不确定性,变异性和不精确性。

著录项

  • 作者

    Yu, Ce.;

  • 作者单位

    University of Guelph (Canada).;

  • 授予单位 University of Guelph (Canada).;
  • 学科 Engineering General.; Agriculture Food Science and Technology.
  • 学位 M.Sc.
  • 年度 2005
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程基础科学;农产品收获、加工及贮藏;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号