首页> 外文学位 >Aeroelastic and aerothermoelastic behavior of two and three dimensional lifting surfaces in hypersonic flow.
【24h】

Aeroelastic and aerothermoelastic behavior of two and three dimensional lifting surfaces in hypersonic flow.

机译:高超声速流动中二维和三维提升面的气动弹性和气动弹性行为。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes the aeroelastic analysis of a typical section, as well as the more complex aeroelastic and aerothermoelastic analysis of a low aspect ratio wing, in hypersonic flow.; Due to the inability to test aeroelastically and aerothermoelastically scaled wind tunnel models in hypersonic flow, computational aeroelasticity and aerothermoelasticity is essential to the development of hypersonic vehicles. Therefore, in order to advance this area in the hypersonic flow regime, several fundamental issues are addressed; including: the effectiveness of several approximate unsteady aerodynamic theories, the role of viscosity, the reduction of computational cost by using efficient time domain damping and frequency identification, the construction of appropriate and efficient grids, the sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to computational parameters governing temporal accuracy, and the effect of aerodynamic heating on aeroelastic stability.; First, the aeroelastic behavior of a simple double wedge typical section is studied using several approximate aerodynamic theories, with and without an effective shape correction, and compared to that predicted using CFD solutions to the unsteady Euler and Navier-Stokes equations. Next, the flutter boundary of a low aspect ratio wing is computed over a wide range of altitudes and Mach numbers using piston theory, Euler and Navier-Stokes aerodynamics. In general, the agreement is good, at moderate to high altitudes, for the three aerodynamic methods. However, the wing flutters at high Mach numbers in the absence of aerodynamic heating. Therefore, since aerodynamic heating is an inherent feature of hypersonic flight, and since the aeroelastic behavior of a vehicle is dependent on structural variations, an aerothermoelastic methodology is developed that incorporates heat transfer between the fluid and the structure using CFD based aerodynamic heating computations. The aerothermoelastic solution procedure is then applied to the low aspect ratio wing, operating on a representative hypersonic trajectory, for varying angle of attack and Mach number. It is observed that the aerothermoelastic behavior of the wing is sensitive to these two parameters. Furthermore, the wing is also found to be susceptible to thermal buckling due to the intense aerodynamic heating present along the representative trajectory.
机译:本文描述了高超声速流动中典型截面的气动弹性分析,以及低纵横比机翼的更复杂的气动弹性和气动热弹性分析。由于无法在高超声速气流中测试气动和气动弹性比例缩放的风洞模型,因此计算气动弹性和气动弹性对于高超声速飞行器的开发至关重要。因此,为了在高超音速流态下推进这一领域,解决了一些基本问题。包括:几种近似的非定常空气动力学理论的有效性,粘度的作用,通过使用有效的时域阻尼和频率识别来减少计算成本,构建适当而有效的网格,使用Euler和Navier生成的气动弹性行为的敏感性-根据控制时间精度的计算参数来改变空气动力学,以及空气动力学加热对气动弹性稳定性的影响。首先,使用几种近似的空气动力学理论研究简单双楔形典型截面的气动弹性行为,并进行有效和不进行有效的形状校正,然后将其与使用CFD解决方案对不稳定Euler和Navier-Stokes方程预测的结果进行比较。接下来,使用活塞理论,欧拉(Euler)和纳维尔·斯托克斯(Navier-Stokes)空气动力学在很宽的高度和马赫数范围内计算低纵横比机翼的扑动边界。通常,对于三种空气动力学方法,在中等高度到高海拔时,协议是好的。然而,在没有空气动力加热的情况下,机翼以高马赫数拍动。因此,由于气动加热是高超音速飞行的固有特征,并且由于车辆的气动弹性行为取决于结构变化,因此开发了一种气动热弹性方法,该方法使用基于CFD的气动加热计算将流体与结构之间的传热结合在一起。然后将气动热弹性求解程序应用于低纵横比的机翼,以代表性的高超音速轨迹运行,以改变迎角和马赫数。观察到,机翼的空气热弹性行为对这两个参数敏感。此外,由于沿代表性轨迹存在强烈的空气动力学加热,还发现机翼易于发生热屈曲。

著录项

  • 作者

    McNamara, Jack J.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 276 p.
  • 总页数 276
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号