首页> 外文学位 >Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments.
【24h】

Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments.

机译:利用多体环境中的共振轨道的航天器转移轨迹设计。

获取原文
获取原文并翻译 | 示例

摘要

Historically, resonant orbits have been employed in mission design for multiple planetary flyby trajectories and, more recently, as a source of long-term orbital stability. For instance, in support of a mission concept in NASA's Outer Planets Program, the Jupiter Europa Orbiter spacecraft is designed to encounter two different resonances with Europa during the 'endgame' phase, leading to Europa orbit insertion on the final pass. In 2011, the Interstellar Boundary Explorer spacecraft was inserted into a stable out-of-plane lunar-resonant orbit, the first of this type for a spacecraft in a long-term Earth orbit. However, resonant orbits have not yet been significantly explored as transfer mechanisms between non-resonant orbits in multi-body systems. This research effort focuses on incorporating resonant orbits into the design process to potentially enable the construction of more efficient or even novel transfer scenarios. Thus, the goals in this investigation are twofold: i) to expand the orbit architecture in multi-body environments by cataloging families of resonant orbits, and ii) to assess the role of such families in the design of transfer trajectories with specific patterns and itineraries. The benefits and advantages of employing resonant orbits in the design process are demonstrated through a variety of astrodynamics applications in several multi-body systems.;In the Earth-Moon system, locally optimal transfer trajectories from low Earth orbit to selected libration point orbits are designed by leveraging conic arcs and invariant manifolds associated with resonant orbits. Resonant manifolds in the Earth-Moon system offer trajectories that tour the entire space within reasonable time intervals, facilitating the design of libration point orbit tours as well as Earth-Moon cyclers. In the Saturnian system, natural transitions between resonant and libration point orbits are sought and the problem of accessing Hyperion from orbits that are resonant with Titan is also examined. To add versatility to the proposed design method, a system translation technique enables the straightforward transition of solutions from the Earth-Moon system to any Sun-planet or planet-moon three-body system. The circular restricted three-body problem serves as a basis to quickly generate solutions that meet specific requirements, but candidate transfer trajectories are then transitioned to an ephemeris model for validation.
机译:从历史上看,共振轨道已用于多种行星飞越轨迹的任务设计中,并且最近已作为长期轨道稳定性的来源。例如,为支持美国宇航局“外行星计划”中的飞行任务概念,木星欧罗巴轨道飞行器的设计是在“末局”阶段与欧罗巴发生两种不同的共鸣,最终导致欧罗巴在最后一关进入轨道。 2011年,“星际边界探索者”航天器被插入稳定的月面共振轨道外,这是航天器在长期地球轨道上的首次此类飞行。但是,作为多体系统中非共振轨道之间的传递机制,共振轨道尚未得到显着研究。这项研究工作的重点是将共振轨道纳入设计过程,以潜在地构建更有效甚至新颖的传输方案。因此,本研究的目标是双重的:i)通过对共振轨道族进行分类来扩展多体环境中的轨道结构,ii)评估此类族在具有特定模式和路线的转移轨迹设计中的作用。通过在多个多体系统中的多种航天动力学应用,证明了在设计过程中采用共振轨道的优缺点。在地月系统中,设计了从低地球轨道到选定的解放点轨道的局部最优转移轨迹通过利用与共振轨道相关的圆锥弧和不变流形。地月系统中的共振流形提供了在合理的时间间隔内巡视整个空间的轨迹,从而简化了解放点轨道巡回赛以及地月自行车的设计。在土星系统中,寻求共振点和解放点轨道之间的自然过渡,并且还研究了从与泰坦共振的轨道访问Hyperion的问题。为了在建议的设计方法中增加多功能性,系统转换技术使解决方案可以从地月系统直接转换为任何太阳行星或行星月球三体系统。圆形受限三体问题是快速生成满足特定要求的解决方案的基础,但随后将候选转移轨迹转换为星历模型以进行验证。

著录项

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号