首页> 外文学位 >The Structure and Properties of Silica Glass Nanostructures using Novel Computational Systems.
【24h】

The Structure and Properties of Silica Glass Nanostructures using Novel Computational Systems.

机译:使用新型计算系统的二氧化硅玻璃纳米结构的结构和性能。

获取原文
获取原文并翻译 | 示例

摘要

The structure and properties of silica glass nanostructures are examined using computational methods in this work. Standard synthesis methods of silica and its associated material properties are first discussed in brief. A review of prior experiments on this amorphous material is also presented. Background and methodology for the simulation of mechanical tests on amorphous bulk silica and nanostructures are later presented. A new computational system for the accurate and fast simulation of silica glass is also presented, using an appropriate interatomic potential for this material within the open-source molecular dynamics computer program LAMMPS. This alternative computational method uses modern graphics processors, Nvidia CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model select materials, this enhancement allows the addition of accelerated molecular dynamics simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal of this project is to investigate the structure and size dependent mechanical properties of silica glass nanohelical structures under tensile MD conditions using the innovative computational system. Specifically, silica nanoribbons and nanosprings are evaluated which revealed unique size dependent elastic moduli when compared to the bulk material. For the nanoribbons, the tensile behavior differed widely between the models simulated, with distinct characteristic extended elastic regions. In the case of the nanosprings simulated, more clear trends are observed. In particular, larger nanospring wire cross-sectional radii (r) lead to larger Young's moduli, while larger helical diameters (2R) resulted in smaller Young's moduli. Structural transformations and theoretical models are also analyzed to identify possible factors which might affect the mechanical response of silica nanostructures under tension. The work presented outlines an innovative simulation methodology, and discusses how results can be validated against prior experimental and simulation findings. The ultimate goal is to develop new computational methods for the study of nanostructures which will make the field of materials science more accessible, cost effective and efficient.
机译:这项工作中使用计算方法检查了石英玻璃纳米结构的结构和性能。首先简要讨论二氧化硅的标准合成方法及其相关的材料性能。还介绍了对这种非晶态材料的先前实验。稍后介绍了模拟非晶态块状二氧化硅和纳米结构的机械测试的背景和方法。还提出了一种新的计算系统,用于精确,快速地模拟石英玻璃,并在开源分子动力学计算机程序LAMMPS中使用了该材料的适当原子间势。这种替代的计算方法使用现代图形处理器,Nvidia CUDA技术和专门的科学代码来克服传统计算方法常见的处理速度障碍。结合用于对选定材料进行建模的虚拟现实系统,此增强功能允许添加加速的分子动力学模拟功能。动机是提供一个新颖的研究环境,同时允许可视化,仿真,建模和分析。该项目的研究目标是使用创新的计算系统研究拉伸MD条件下二氧化硅玻璃纳米螺旋结构的结构和尺寸相关的机械性能。具体而言,对二氧化硅纳米带和纳米弹簧进行了评估,与大块材料相比,二氧化硅纳米带和纳米弹簧具有独特的尺寸依赖性弹性模量。对于纳米带,模拟模型之间的拉伸行为差异很大,具有明显的特征性延伸弹性区域。在模拟纳米弹簧的情况下,观察到更明显的趋势。特别地,较大的纳米弹簧线横截面半径(r)导致较大的杨氏模量,而较大的螺旋直径(2R)导致较小的杨氏模量。还分析了结构转换和理论模型,以确定可能影响张力下二氧化硅纳米结构的机械响应的可能因素。提出的工作概述了一种创新的仿真方法,并讨论了如何根据先前的实验和仿真结果验证结果。最终目标是为研究纳米结构开发新的计算方法,这将使材料科学领域更易于访问,更经济高效。

著录项

  • 作者

    Doblack, Benjamin N.;

  • 作者单位

    University of California, Merced.;

  • 授予单位 University of California, Merced.;
  • 学科 Engineering Materials Science.;Nanoscience.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2013
  • 页码 68 p.
  • 总页数 68
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号