首页> 外文学位 >Nonlinear dynamics and control of high-speed supercavitating vehicles.
【24h】

Nonlinear dynamics and control of high-speed supercavitating vehicles.

机译:高速超空化车辆的非线性动力学和控制。

获取原文
获取原文并翻译 | 示例

摘要

Supercavitation is an attractive option for high-speed motion of underwater vehicles. This is possible due to the massive drop in skin-friction drag when compared to when the vehicle is fully wetted. Computational methods are useful and cost effective alternatives to experimental tests for studying the dynamics of supercavitating vehicles. However, the dynamics of such a vehicle is difficult to model due to the complex nature of the flow physics associated with such a motion. Still, reduced order models have been effectively used to capture the most prominent features associated with the supercavitating vehicle motion. In this dissertation the dynamical systems model consists of a 6 DOF dynamics model along with correlation based models for the cavity and planing. Both fin-supported and planing-supported motion regimes have been considered in studying the open-loop response. The investigation into the open-loop dynamics is devoted mainly to studying the tailslap phenomenon. Controllers have been devised for the nonlinear system using linear optimal control techniques LQR and mu synthesis. Robustness is achieved by including parametric uncertainty in the linear model while using the mu synthesis control technique. Uncertainty is introduced so that the controller effectively deals with the nonlinear system. Receding horizon control is a powerful tool for online controller synthesis for enhanced performance of highly nonlinear systems. A finite receding horizon LQR tracking controller is designed for the supercavitating problem. The forces experienced by the actuator joints are critical from the designer's point of view. These concerns are addressed through a multibody formulation of the vehicle dynamics. The results corroborate a few established properties of the supercavitating motion. Also, a more comprehensive understanding of tailslap and its dependence on various design parameters has been obtained. The control results have given effective inner-loop controllers with satisfactory performance.
机译:超级气蚀是水下车辆高速运动的一种有吸引力的选择。与车辆完全浸湿相比,这是由于皮肤摩擦阻力大幅下降所致。计算方法是研究超空化车辆动力学的实验测试的有用且具有成本效益的替代方法。然而,由于与这种运动相关的流动物理学的复杂性质,难以对这种车辆的动力学进行建模。尽管如此,降阶模型已经有效地用于捕获与超空化车辆运动相关的最突出特征。本文的动力学系统模型包括一个6自由度动力学模型以及基于相关性的模腔和平面模型。在研究开环响应时,已经考虑了鳍支撑和平面支撑的运动方式。开环动力学的研究主要致力于研究尾巴现象。已经使用线性最佳控制技术LQR和mu综合为非线性系统设计了控制器。通过使用mu综合控制技术在线性模型中包含参数不确定性,可以实现鲁棒性。引入不确定性,以便控制器有效地处理非线性系统。后退水平控制是用于在线控制器综合以增强高度非线性系统性能的强大工具。针对超空化问题设计了有限的后视层LQR跟踪控制器。从设计者的角度来看,执行器关节承受的力至关重要。这些问题通过车辆动力学的多体公式解决。结果证实了超空化运动的一些已确立的性质。而且,已经获得了对尾巴及其对各种设计参数的依赖性的更全面的理解。控制结果使有效的内环控制器具有令人满意的性能。

著录项

  • 作者

    Jammulamadaka, Anand K.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号