首页> 外文学位 >Phenazine: a building block for multinuclear and heterometallic complexes, where the ligand acts as an electron acceptor and radical abstractor.
【24h】

Phenazine: a building block for multinuclear and heterometallic complexes, where the ligand acts as an electron acceptor and radical abstractor.

机译:吩嗪:多核和杂金属配合物的结构单元,其中配体充当电子受体和自由基抽象剂。

获取原文
获取原文并翻译 | 示例

摘要

Over the past decade, intensive academic and commercial interests have been paid on compounds possessing photochemical properties, namely for their preparation, chemical properties, high efficiency and potential low-cost.;Therefore a phenazine ligand was selected as a model for the present investigation. The chemistry of phenazine ligand is mostly limited to the late transition metal and f---element complexes. Our laboratory has a rich backgroung in the aluminum and early transition metal chemistry. The aluminum chemistry and early transition metal chemistry are of great interest since aluminum and early transition metal complexes are environmentally friendlier and cheaper than the late transition metal compounds. Another drawback of the ruthenium-based sensitizers is the lack of absorption in the red region of the visible spectrum, and also low molar extinction coefficients. An essential requirement for efficient conversion of solar energy is the good spectral match of the sensitizer absorption to the emission spectrum of solar radiation. In this regard, the ruthenium sensitizers' spectral response in the lower energy regions is not sufficient. The current project has three parts. In the first part we collected and reviewed known literature regarding the certain classes of non-innocent ligands containing the six-membered carbon-nitrogen heterocycles and regarding the ligands potentially important for the photochemical applications. We also reviewed all available to the data information about the complexes supported by the phenazine ligand.;In the second part we have investigated interaction of alkylaluminum compounds and phenazine and observed reduction of phenazine accompanied by formation of dialuminum cage type compounds containing two formally mononegative phenazine ligand. The derivatization of phenazine has been also observed. It resulted in formation of compounds having a stable organic radical.;In a third part of our project we have explored interaction of phenazine or thiophenazine with the alkylaluminum compounds and chromium dichloride. The reaction in the three component system resulted in reduction of phenazine ligand and lead to the heterometallic Cr(II)---aluminum complexes containing a formally dinegative phenazine or thiophenazine ligands. When a large excess of triethylaluminum was taken, reduction of phenazine and chromium has been observed leading to the heterometallic multinuclear Cr(I)---aluminum complex containing a formally dinegative phenazine ligands and two chromium atoms in one complex in the rare oxidation state one.;Compounds having intense photochemical properties gained great interest due to wide range of potential applications. The sensitizers are one of the key components for high power-conversion efficiency in the dye sensitized solar cells (DSSCs). They are the core components in the organic light-emitting devices (OLEDs) due to their ability to emit light with the wavelengths largely red-shifted from their absorption wavelength. Ruthenium based sensitizers have been tagged "molecular light switches" because, although the fluorescence of these complexes in aqueous solutions is negligible, it increases of greater than 10000 fold in the presence of DNA. Many polypyridyl and dipyrido phenazine ruthenium complexes have achieved high power conversion efficiencies and therefore are of practical interest. Several research groups stated that the dipyrido phenazine ligand may be thought of as comprising two components: a bipyridyl unit and a phenazine unit. These two subunits behave essentially separately, with many molecular orbitals being localised over only one subunit and a redox properties of central phenazine moiety in the dipyrido phenazine ligand are important for the photochemical applications.
机译:在过去的十年中,人们对具有光化学性质的化合物的制备,化学性质,高效和潜在的低成本给予了广泛的学术和商业兴趣。因此,选择了吩嗪配体作为本研究的模型。吩嗪配体的化学作用主要限于后期过渡金属和f-元素络合物。我们的实验室在铝和早期过渡金属化学方面具有丰富的背景知识。铝化学和早期过渡金属化学引起人们极大的兴趣,因为铝和早期过渡金属配合物比后过渡金属化合物对环境友好且便宜。钌基敏化剂的另一个缺点是在可见光谱的红色区域缺乏吸收,并且摩尔消光系数也低。有效转换太阳能的基本要求是敏化剂吸收与太阳辐射发射光谱的良好光谱匹配。在这方面,在较低能量区域中钌敏化剂的光谱响应是不够的。当前项目分为三个部分。在第一部分中,我们收集并回顾了有关含有六元碳氮杂环的某些类型的非纯配体以及对光化学应用潜在重要的配体的已知文献。我们还回顾了所有可用的有关吩嗪配体支持的配合物的数据信息。在第二部分中,我们研究了烷基铝化合物与吩嗪的相互作用,观察了吩嗪的还原反应,同时形成了含有两个形式为单负吩嗪的二氮杂铝笼型化合物。配体。还观察到吩嗪的衍生化。这导致形成具有稳定有机基团的化合物。在我们项目的第三部分中,我们研究了吩嗪或噻吩嗪与烷基铝化合物和二氯化铬的相互作用。在三组分系统中的反应导致吩嗪配体的还原,并导致含有正式阴性的吩嗪或噻吩嗪配体的杂金属Cr(II)-铝配合物。当使用大量过量的三乙基铝时,已观察到吩嗪和铬的还原导致异金属多核Cr(I)-铝络合物在一种络合物中含有形式上呈负性的吩嗪配体和两个铬原子,且处于罕见的氧化态。具有强光化学性质的化合物由于广泛的潜在应用而引起了人们的极大兴趣。敏化剂是染料敏化太阳能电池(DSSC)中高功率转换效率的关键成分之一。它们是有机发光器件(OLED)的核心组件,因为它们具有发射波长从其吸收波长发生红移的光的能力。钌基敏化剂已被标记为“分子光开关”,因为尽管这些络合物在水溶液中的荧光可以忽略不计,但在存在DNA的情况下其增幅大于10000倍。许多聚吡啶基和二吡啶基吩嗪钌络合物已经实现了高功率转换效率,因此具有实际意义。几个研究小组指出,二吡啶基吩嗪配体可被认为包含两个组分:联吡啶单元和吩嗪单元。这两个亚基的行为基本上是分开的,许多分子轨道仅位于一个亚基上,而二吡啶基吩嗪配体中中央吩嗪部分的氧化还原特性对于光化学应用很重要。

著录项

  • 作者

    Vladimir, Shuster.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Chemistry Organic.
  • 学位 M.Sc.
  • 年度 2013
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号