首页> 外文学位 >Characterization and modeling of materials used in improvised explosive devices.
【24h】

Characterization and modeling of materials used in improvised explosive devices.

机译:简易爆炸装置中使用的材料的表征和建模。

获取原文
获取原文并翻译 | 示例

摘要

The mechanical response of energetic materials, especially those used in improvised explosive devices, is of great interest in the defense community. By understanding the mechanical behavior of the explosive material, it is believed that a remote acoustic or electromagnetic excitation may be tuned to produce signature that can be used to indicate the presence of explosives. The goals of the investigation were to identify macroscopic uni-axial mechanical material properties, and to develop robust models of uni-axial behavior of polymer energetic materials. Attention was restricted to uni-axial deformation of hydroxyl-terminated polybutadiene (HTPB) binder embedded with ammonium chloride crystals (NH4Cl). An elastic Ogden model was fitted to stress-strain data from uni-axial compression tests conducted on the HTPB binder. From the low-strain compression test data estimates of the Young's Modulus of the binder matrix where found to range from 2.67 MPa to 7.56 MPa. A series of swept sine-wave base-excitation tests were conducted on 0% and 50% crystal/binder volume fraction materials attached to a mass to examine the behavior and repeatability of the material-mass system dynamic responses. A continuous-time system identification approach is applied to develop models that predicted the harmonic base excitation responses. The estimated models were analyzed to produce estimates of the material properties. Six different models containing different combinations of linear and nonlinear expressions of stiffness, damping and viscoelastic terms were considered. While good agreement between the response measured in experiments and responses predicted from a linear model without viscoelasticity were often obtained, the inclusion of a hereditary viscoelastic term significantly improved the results. Some improvements were achieved when using a nonlinear viscoelastic model for the 50% material. Estimates of the damping ratio ranged from 0.10 to 0.13 for the 0% material and from 0.20 to 0.22 for the 50% material. Lastly, the Young's Modulus (E), was estimated from linear approximations to the stiffness terms in the equation of motion; for HTPB 0%, Young's Modulus ranges from 3.307 MPa to 7.251 MPa, and for HTPB 50%, Young's Modulus ranges from 29.63 MPa to 66.29 MPa. The Young's Modulus estimates of the HTPB binder matrix are of the same order and range as the estimated from the room-temperature compression tests.
机译:高能材料的机械响应,特别是用于简易爆炸装置的高能材料,在国防界引起了极大兴趣。通过了解爆炸物的机械性能,可以相信可以调节远距离声或电磁激励以产生可用于指示爆炸物存在的特征。研究的目的是确定宏观的单轴机械材料性能,并开发聚合物高能材料的单轴行为的鲁棒模型。注意仅限于嵌入氯化铵晶体(NH4Cl)的羟基封端的聚丁二烯(HTPB)粘合剂的单轴变形。将弹性Ogden模型拟合到在HTPB粘合剂上进行的单轴压缩测试得到的应力-应变数据。根据低应变压缩测试数据,估计粘合剂基体的杨氏模量为2.67 MPa至7.56 MPa。对附着在质量块上的0%和50%的晶体/粘合剂体积分数材料进行了一系列扫频正弦波基极激励测试,以检查材料质量系统动态响应的行为和可重复性。应用连续时间系统识别方法来开发预测谐波基励磁响应的模型。分析估计的模型以产生材料特性的估计。考虑了六个不同的模型,这些模型包含刚度,阻尼和粘弹性项的线性和非线性表达式的不同组合。虽然通常在实验中测得的响应与从没有粘弹性的线性模型预测的响应之间获得了很好的一致性,但是包含遗传粘弹性项可以显着改善结果。当对50%的材料使用非线性粘弹性模型时,可以实现一些改进。对于0%的材料,阻尼比的估计值范围从0.10到0.13,对于50%的材料,阻尼率的估计值从0.20到0.22。最后,根据运动方程中的刚度项的线性近似估计杨氏模量(E)。对于HTPB 0%,杨氏模量范围为3.307 MPa至7.251 MPa,对于HTPB 50%,杨氏模量范围为29.63 MPa至66.29 MPa。 HTPB粘合剂基质的杨氏模量估算值与室温压缩试验估算值的范围相同和范围相同。

著录项

  • 作者

    Paripovic, Jelena.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.M.E.
  • 年度 2013
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号