首页> 外文学位 >Devising smart finite elements for adaptive analysis of inverse structural problems.
【24h】

Devising smart finite elements for adaptive analysis of inverse structural problems.

机译:为逆结构问题的自适应分析设计智能有限元。

获取原文
获取原文并翻译 | 示例

摘要

Inverse problems have recently attracted a lot of attention. Many challenges in the present engineering practice necessitate dealing with problems that fall under this category. Identification of material properties and models is one of the recent examples of inverse problems. Material models are the key ingredients to accurately capture the global mechanical response of structural systems. Conventional material modeling uses mathematical formulas to describe material behavior. These functions are not expected to exactly reproduce global experimental response. Furthermore, the increase in the material complexity results in an increase in the number of model parameters to be identified, which in turn limits the practicality of implementation of such models. Alternatively, the measured global response at specific domain or surface points can be used to guide the nonlinear structural analysis in the lack of a reliable material model. By imposing the measured displacement at the monitoring points on to the solution that uses an approximate material model, a set of modified stress-strain data points are generated throughout the domain. The stress-strain data point at the highly stressed integration point is then selected to develop an adaptively improved material model. The partially improved material model is then used within a multi-pass incremental non-linear finite element analysis in order to recover the actual material response. Plasticity formulation is used to build the nonlinear material matrices. As a result, the discrepancy between the measured and the predicted structural response at the monitoring points is gradually minimized leading to suitably predicted material models. The applicability of the proposed approach is first demonstrated by solving inverse problems of simple mechanical models and structural systems. Then, the proposed method is extended to a 2D finite element procedure to study its applicability in predicting the constitutive behavior of continuum 2D problems with coupled stresses and strains. Another inverse formulation for predicting the nonlinear material response of fiber reinforced polymer composites from angle-ply laminates response is presented. The data from uniaxial 0° degree coupons, (+/-theta 1°)n and (+/-theta2°) n angle-ply specimens is utilized to determine material response. Excellent results are obtained showing great potential of the present approach in health monitoring and nondestructive testing applications.
机译:反问题最近引起了很多关注。当前工程实践中的许多挑战使得必须处理属于此类的问题。材料特性和模型的识别是反问题的最新实例之一。材料模型是准确捕获结构系统整体机械响应的关键要素。常规材料建模使用数学公式来描述材料行为。预期这些功能不能准确地再现全局实验响应。此外,材料复杂性的增加导致要识别的模型参数的数量增加,这反过来又限制了这种模型实施的实用性。或者,在缺乏可靠的材料模型的情况下,在特定区域或表面点处测得的整体响应可用于指导非线性结构分析。通过在使用近似材料模型的解决方案上将监视点处的测量位移强加到解决方案上,将在整个域中生成一组修改后的应力-应变数据点。然后选择高应力集成点处的应力-应变数据点以开发自适应改进的材料模型。然后,在多遍增量非线性有限元分析中使用经过部分改进的材料模型,以恢复实际的材料响应。可塑性公式用于构建非线性材料矩阵。结果,在监视点处测得的结构响应和预测的结构响应之间的差异逐渐减小到最小,从而导致了适当预测的材料模型。首先通过解决简单的机械模型和结构系统的反问题证明了所提出方法的适用性。然后,将所提出的方法扩展到二维有限元程序,以研究其在预测带有应力和应变的连续二维问题的本构行为中的适用性。提出了另一种逆公式,用于根据角层板层压材料的响应来预测纤维增强聚合物复合材料的非线性材料响应。来自单轴0°样片,(+/-θ1°)n和(+/-θ2°)n角层样品的数据用于确定材料响应。获得了优异的结果,表明了本方法在健康监测和无损检测应用中的巨大潜力。

著录项

  • 作者

    Charkas, Hasan Farouk.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Engineering Civil.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;应用力学;
  • 关键词

  • 入库时间 2022-08-17 11:41:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号