首页> 外文学位 >Fluid{Structure Interaction Modeling of Modified-Porosity Parachutes and Parachute Clusters.
【24h】

Fluid{Structure Interaction Modeling of Modified-Porosity Parachutes and Parachute Clusters.

机译:孔隙率降落伞和降落伞簇的流体{结构相互作用建模。

获取原文
获取原文并翻译 | 示例

摘要

To increase aerodynamic performance, the geometric porosity of a ringsail spacecraft parachute canopy is sometimes increased, beyond the "rings" and "sails" with hundreds of "ring gaps" and "sail slits." This creates extra computational challenges for fluid-structure interaction (FSI) modeling of clusters of such parachutes, beyond those created by the lightness of the canopy structure, geometric complexities of hundreds of gaps and slits, and the contact between the parachutes of the cluster. In FSI computation of parachutes with such "modified geometric porosity," the ow through the "windows" created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the Homogenized Modeling of Geometric Porosity (HMGP), which was introduced to deal with the hundreds of gaps and slits. The ow needs to be actually resolved. All these computational challenges need to be addressed simultaneously in FSI modeling of clusters of spacecraft parachutes with modified geometric porosity. The core numerical technology is the Stabilized Space-Time FSI (SSTFSI) technique, and the contact between the parachutes is handled with the Surface-Edge-Node Contact Tracking (SENCT) technique. In the computations reported here, in addition to the SSTFSI and SENCT techniques and HMGP, we use the special techniques we have developed for removing the numerical spinning component of the parachute motion and for restoring the mesh integrity without a remesh. We present results for 2- and 3-parachute clusters with two different payload models. We also present the FSI computations we carried out for a single, subscale modified-porosity parachute.
机译:为了提高空气动力学性能,有时会增加环形帆航天器降落伞机盖的几何孔隙率,超过具有数百个“环形间隙”和“帆缝”的“环形”和“帆”。这样的降落伞群集的流固耦合(FSI)建模带来了额外的计算挑战,这超出了冠层结构的轻巧,数百个缝隙和狭缝的几何复杂性以及群集降落伞之间的接触所带来的挑战。在FSI计算具有这种“修改后的几何孔隙度”的降落伞时,无法通过均质化几何孔隙度建模精确地建模通过移除面板所产生的“窗口”流以及通过移除帆而产生的更宽的间隙( HMGP),旨在处理数百个间隙和缝隙。流动需要实际解决。在具有改进的几何孔隙度的航天器降落伞簇的FSI建模中,所有这些计算难题都需要同时解决。核心数值技术是稳定时空FSI(SSTFSI)技术,降落伞之间的接触通过表面边缘节点接触跟踪(SENCT)技术处理。在此处报告的计算中,除了SSTFSI和SENCT技术以及HMGP外,我们还使用我们开发的特殊技术来删除降落伞运动的数字旋转分量并恢复网格完整性而无需重新设置。我们介绍了具有两个不同有效负载模型的2降落伞和3降落伞群集的结果。我们还介绍了我们对单个子尺度的修正孔隙率降落伞进行的FSI计算。

著录项

  • 作者

    Boben, Joseph J.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Engineering Mechanical.;Engineering Aerospace.
  • 学位 M.S.
  • 年度 2013
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号