首页> 外文学位 >The polarity effect of electromigration on intermetallic compound formation and back stress in v-groove solder lines.
【24h】

The polarity effect of electromigration on intermetallic compound formation and back stress in v-groove solder lines.

机译:电迁移对v槽焊锡线中金属间化合物形成和反应力的极性影响。

获取原文
获取原文并翻译 | 示例

摘要

The trend of the miniaturization of VLSI and electronic packaging toward higher input/output density, smaller feature size and greater performance makes electromigration a serious reliability concern in flip chip technology. As an integral part of the joint, intermetallic compound (IMC) formation is very important to achieve good joint strength. However, the effect of electromigration on the IMC formation is a subject in which still very little is known.; We utilize solder v-groove samples etched on (001) Si wafer with 100 mum opening to study the polarity effect of electromigration on IMC formation in solder joints. We focus on the interaction between chemical and electrical forces, and the influence of interface morphology on the IMC dissolution. The current densities used are from 103 to 104 A/cm2 and the temperature settings are in the range of 120°C to 180°C.; We have found in both 95.5Sn3.8Ag0.7Cu/Cu and 96.5Sn3.5Ag systems the growth of the IMC has been enhanced by electric current at the anode and inhibited at the cathode. For Ni-Sn compound, kinetic analysis using the motion of the two interfaces gives the general formula of the growth rate as dXdt=aX + b. We have introduced the concept of mean-field theory and the classic model of Zener's precipitation growth into the discussion of the Cu-Sn compound growth under electromigration. A parabolic dependence of the IMC growth on time at the anode is derived as x 2 ≅ &parl0;Cm-Ce&parr0;2 &parl0;Cs-Ce&parr0;2 Dt.; The interaction between chemical and electrical forces brings a dynamic equilibrium in IMC dissolution at the cathode. This has been proved theoretically and experimentally. A new critical product has been derived from this dynamic equilibrium, which can provide us a critical IMC thickness before voids formation at a given current density. Our study shows the dissolution rate of Cu with current density 5x103 A/cm2 at 150°C is about 0.076 mum/hr. We also notice that the interface morphology plays an important role in the IMC dissolution. When the current density reaches 105 A/cm2, a planar interface will become unstable. Furthermore, this morphological instability can induce phase change in the flip chip solder joint, which finally causes a failure at the cathode.; Efforts are also made in the study of back stress in solder joints since the existence of back stress can resist or prevent electromigration from occurring. A multi-solder-segment v-groove sample structure has been developed to obtain the critical products of eutectic SnPb, Sn3.5Ag and Sn3.8Ag0.7Cu solders.
机译:VLSI和电子封装的小型化趋向于更高的输入/输出密度,更小的特征尺寸和更高的性能,使得电迁移成为倒装芯片技术中严重的可靠性问题。作为接头的组成部分,金属间化合物(IMC)的形成对于获得良好的接头强度非常重要。然而,电迁移对IMC形成的影响是一个还知之甚少的主题。我们利用在100毫米开口处(001)硅晶圆上蚀刻的v型槽样品来研究电迁移对焊点中IMC形成的极性影响。我们专注于化学力和电子力之间的相互作用,以及界面形态对IMC溶解的影响。所使用的电流密度为103至104 A / cm2,温度设置为120°C至180°C。我们已经发现,在95.5Sn3.8Ag0.7Cu / Cu和96.5Sn3.5Ag系统中,IMC的生长都被阳极上的电流增强而在阴极上受到抑制。对于Ni-Sn化合物,使用两个界面的运动进行动力学分析,得出生长速率的一般公式为dXdt = aX + b。我们将均值场理论的概念和齐纳(Zener)降水增长的经典模型引入到讨论电迁移下的Cu-Sn复合物增长的讨论中。 IMC生长在阳极上的时间的抛物线依赖性为x 2 2& Cm-Ce&parr0; 2&parl0; Cs-Ce&parr0; 2 Dt。化学力和电能之间的相互作用在阴极的IMC溶解中带来了动态平衡。理论上和实验上都证明了这一点。从这种动态平衡中得出了一个新的临界产品,该产品可以在给定电流密度下在空隙形成之前为我们提供临界的IMC厚度。我们的研究表明,电流密度为5x103 A / cm2的Cu在150°C时的溶解速率约为0.076 mum / hr。我们还注意到,界面形态在IMC溶解中起着重要作用。当电流密度达到105 A / cm2时,平面界面将变得不稳定。此外,这种形态上的不稳定性会在倒装芯片焊点中引起相变,最终导致阴极失效。由于存在背应力可以抵抗或防止电迁移的发生,因此在研究焊点背应力方面也做出了努力。已经开发了一种多焊段的v槽样品结构,以获得共晶SnPb,Sn3.5Ag和Sn3.8Ag0.7Cu焊料的关键产品。

著录项

  • 作者

    Ou, Shengquan.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.; Engineering Packaging.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 96 p.
  • 总页数 96
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;包装工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号