首页> 外文学位 >Computational modeling of the explosion and detonation of high explosives.
【24h】

Computational modeling of the explosion and detonation of high explosives.

机译:高能炸药爆炸和爆炸的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

The detonation of hundreds of explosive devices from either a transportation or storage accident is an extremely dangerous event. Motivation for this work came from a transportation accident where a truck carrying 16,000 kg of seismic boosters overturned, caught fire and detonated. The damage was catastrophic, creating a crater 24 m wide by 10 m deep in the middle of the highway. Our particular interest is understanding the fundamental physical mechanisms by which convective deflagration of cylindrical PBX-9501 devices can transition to a fully-developed detonation in transportation and storage accidents. Predictive computer simulations of large-scale deflagrations and detonations are dependent on the availability of robust reaction models embedded in a computational framework capable of running on massively parallel computer architectures. Our research group has been developing such models in the Uintah Computational Framework, which is capable of scaling up to 512 K cores. The current Deflagration to Detonation Transition (DDT) model merges a combustion model from Ward, Son, and Brewster that captures the effects of pressure and initial temperature on the burn rate, with a criteria model for burning in cracks of damaged explosives from Berghout et al., and a detonation model from Souers describing fully developed detonation. The prior extensive validation against experimental tests was extended to a wide range of temporal and spatial scales. We made changes to the reactant equation of state-enabling predictions of combustions, explosions, and detonations over a range of pressures spanning five orders of magnitude. A resolution dependence was eliminated from the reaction model facilitating large scale simulations to be run at a resolution of 2 mm without loss of fidelity. Adjustments were also made to slow down the flame propagation of conductive and convective deflagration. Large two- and three-dimensional simulations revealed two dominant mechanisms for the initiation of a DDT, inertial confinement and Impact to Detonation Transition. Understanding these mechanisms led to identifying ways to package and store explosive devices that reduced the probability of a detonation. We determined that the arrangement of the explosive cylinders and the number of devices packed in a box greatly affected the propensity to transition to a detonation.
机译:无论是运输还是存储事故,爆炸数百枚爆炸装置都是非常危险的事件。开展这项工作的动机来自交通事故,一辆载有16,000公斤抗震助推器的卡车倾覆,起火并引爆。这次破坏是灾难性的,在高速公路中间形成了一个宽24 m x深10 m的火山口。我们特别感兴趣的是理解圆柱形PBX-9501装置的对流爆燃可转变为在运输和储存事故中全面发展的起爆的基本物理机制。大规模爆燃和爆轰的预测计算机模拟取决于嵌入在能够在大规模并行计算机体系结构上运行的计算框架中的强大反应模型的可用性。我们的研究小组已经在Uintah计算框架中开发了此类模型,该模型能够扩展到512 K内核。当前的爆燃到爆轰过渡(DDT)模型合并了Ward,Son和Brewster的燃烧模型,该模型捕获了压力和初始温度对燃烧速率的影响,并包含了Berghout等人的在受损炸药的裂纹中燃烧的标准模型。以及来自Souers的爆轰模型,描述了充分发展的爆轰。先前针对实验测试的广泛验证已扩展到广泛的时间和空间范围。我们更改了在五个压力等级范围内的压力范围内的燃烧,爆炸和爆震状态预测反应堆方程。从反应模型中消除了对分辨率的依赖性,从而有助于大规模模拟以2 mm的分辨率运行而不会降低保真度。还进行了调整以减慢传导性和对流爆燃的火焰传播。大型的二维和三维模拟显示了DDT引发的两个主要机制,惯性约束和爆轰过渡的影响。对这些机制的了解导致人们确定了包装和存储爆炸装置的方式,从而降低了爆炸的可能性。我们确定炸药筒的布置和包装在盒子中的装置的数量极大地影响了爆炸向爆炸的倾向。

著录项

  • 作者

    Beckvermit, Jacqueline.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Physical chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号