首页> 外文学位 >The Genetic Architecture of Maize Domestication and Range Expansion.
【24h】

The Genetic Architecture of Maize Domestication and Range Expansion.

机译:玉米驯化和范围扩大的遗传结构。

获取原文
获取原文并翻译 | 示例

摘要

The genetic architecture of the evolution of extreme morphological divergence is one of the fundamental questions of evolutionary biology. Maize ( Zea Mays ssp. mays) and its wild ancestor, teosinte (Zea mays ssp. parviglumis) provide an ideal model for examining this question in part because of their extreme phenotypic divergence in plant architecture, ear morphology, and environmental range. In order to examine the genetic changes underlying this divergence, we use a population of maize-teosinte BC2S 3 RILs. Using these RILs allows us to examine genetic architecture on multiple levels. First, whole genome QTL mapping is used to explore the diversity of genetic architectures which control domestication traits. These genetic architectures range from nearly Mendelian to polygenic. For two near Mendelian traits, glume architecture and barren ear base, the largest QTL contained a single gene in the 1.5 LOD confidence interval. The most polygenic trait was ear diameter, for which we found 35 QTL of varying effect sizes. As part of this project we extended the capabilities of the statistical program R/qtl to apply to a wider variety of experimental crosses. In order to examine the causes of extreme morphological divergence on the single gene level, we fine-mapped a single gene, ZmCCT which controls an approximately 9 day difference in flowering time between the homozygous maize and teosinte classes. We demonstrate that the causative difference is cis-regulatory, as under long day lengths ZmCCT alleles from diverse teosintes were consistently expressed at a higher level than the corresponding temperate maize alleles. Taken together these results provide examples of the variety of ways in which complex traits evolve.
机译:极端形态差异演化的遗传结构是进化生物学的基本问题之一。玉米(Zea Mays ssp。mays)及其野生祖先teosinte(Zea mays ssp。parviglumis)为研究此问题提供了理想的模型,部分原因是它们在植物结构,耳朵形态和环境范围方面存在极大的表型差异。为了检查这种差异背后的遗传变化,我们使用了玉米-teosinte BC2S 3 RIL群体。使用这些RIL可以使我们从多个层面检查遗传结构。首先,使用全基因组QTL作图来探索控制驯化性状的遗传结构的多样性。这些遗传结构范围从几乎孟德尔到多基因。对于两个接近的孟德尔性状,颖片结构和贫瘠的耳基,最大的QTL在1.5 LOD置信区间内包含一个基因。最多基因的性状是耳朵直径,为此我们发现了35个QTL,其影响大小各不相同。作为该项目的一部分,我们扩展了统计程序R / qtl的功能,以适用于各种实验杂交。为了在单个基因水平上检查极端形态差异的原因,我们精细映射了单个基因ZmCCT,该基因控制纯合玉米和teosinte类之间开花时间的大约9天差异。我们证明了因果差异是顺式调节的,因为在长日照下,来自不同肌腱的ZmCCT等位基因始终以比相应的温带玉米等位基因更高的水平表达。这些结果加在一起提供了复杂性状进化的各种方式的例子。

著录项

  • 作者

    Shannon, Laura M.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biology Evolution and Development.;Agriculture Plant Culture.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号