首页> 外文学位 >3D Micro and Nano Fabrication Techniques for Designing Biologically Inspired, Anisotropic Tissue Constructs for Bone, Cartilage and Osteochondral Tissue Regeneration.
【24h】

3D Micro and Nano Fabrication Techniques for Designing Biologically Inspired, Anisotropic Tissue Constructs for Bone, Cartilage and Osteochondral Tissue Regeneration.

机译:设计用于骨骼,软骨和骨软骨组织再生的生物启发的各向异性组织构建体的3D微型和纳米制造技术。

获取原文
获取原文并翻译 | 示例

摘要

Cartilage defects, which are caused by a variety of reasons such as traumatic injuries, osteoarthritis, or osteoporosis, represent common and severe clinical problems. Each year, over 6 million people visit hospitals in the U.S. for various knee, wrist, and ankle problems. As modern medicine advances, new and novel methodologies have been explored and developed in order to solve and improve current medical problems. One of the areas of investigation that has thus far proven to be very promising is tissue engineering. Since cartilage matrix is nanocomposite, the goal of the current work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds for facilitating human bone marrow mesenchymal stem cell (MSC) chondrogenesis. For this purpose, through electrospinning techniques, we designed a series of novel 3D biomimetic nanostructured scaffolds based on carbon nanotubes and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro hMSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, our in vitro differentiation results demonstrated that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating can induce more chondrogenic differentiations of MSCs than controls, which make them promising for cartilage tissue engineering applications. These results were then used to inspire the design and fabrication of 3D printed polymer constructs, which were designed to mimic the osteochondral region of articulate joint, and to have enhanced mechanical characteristics when compared to traditional bi-phasic designs. Fabricated scaffolds were also subject to surface modification, both with a chemically functionalized acetylated collagen coating and through absorption via poly-L-lysine coated carbon nanotubes. In vitro proliferation results demonstrated not only that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating and acetylated collagen can induce more proliferation of MSCs than controls, but that more controlled and biomimetically designed features also enhance proliferation of MSCs.
机译:由多种原因引起的软骨缺损,例如外伤,骨关节炎或骨质疏松,代表了常见且严重的临床问题。每年,有超过600万人因各种膝盖,手腕和脚踝问题前往美国的医院就诊。随着现代医学的发展,已经探索和开发了新的和新颖的方法以解决和改善当前的医学问题。迄今为止已证明非常有前途的研究领域之一是组织工程。由于软骨基质是纳米复合材料,因此当前工作的目标是使用纳米材料和纳米/微细加工方法来创建新型的生物学启发的组织工程化软骨支架,以促进人骨髓间充质干细胞(MSC)的软骨形成。为此,通过静电纺丝技术,我们设计了一系列基于碳纳米管和生物相容性聚(L-乳酸)(PLLA)聚合物的新型3D仿生纳米结构支架。具体而言,在本研究中,制造了一系列具有可控纤维尺寸的电纺纤维PLLA支架。 体外 hMSC研究表明,干细胞更喜欢附着在纤维直径较小的支架上。更重要的是,我们的体外分化结果表明,仿生碳纳米管和聚L-赖氨酸涂层的结合可诱导MSC产生更多的软骨分化,这使其在软骨组织工程应用中具有广阔的前景。这些结果随后被用于启发3D打印聚合物构造的设计和制造,该构造被设计为模仿关节的软骨区域,并且与传统的双相设计相比具有增强的机械特性。制成的支架也要进行表面改性,既要用化学功能化的乙酰化胶原蛋白涂层,又要通过聚L-赖氨酸涂层的碳纳米管吸收。 体外增殖结果表明,仿生碳纳米管和聚L-赖氨酸涂层以及乙酰化胶原蛋白的掺入可以比对照组诱导更多的MSC增殖,而且更具控制性和仿生设计的功能也可以促进增殖MSC。

著录项

  • 作者

    Holmes, Benjamin Blair.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Chemistry Biochemistry.;Engineering Mechanical.;Engineering Biomedical.
  • 学位 M.S.
  • 年度 2013
  • 页码 73 p.
  • 总页数 73
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号