首页> 外文学位 >Autothermal reforming (ATR) and ATR membrane reactors for hydrogen production: Experiments and modeling.
【24h】

Autothermal reforming (ATR) and ATR membrane reactors for hydrogen production: Experiments and modeling.

机译:用于制氢的自热重整(ATR)和ATR膜反应器:实验和建模。

获取原文
获取原文并翻译 | 示例

摘要

Despite more than two decades of research in the area, a commercially viable fuel processor for hydrogen production for PEM fuel cells has yet to be developed. The present work begins with a modeling study of fuel processor/fuel cell systems. Integration of the fuel processing reactor into the overall system was studied, and variables affecting processor size and system efficiencies identified. An autothermal reforming (ATR) Pd membrane reactor was shown to offer potential for high productivity and efficiency in a compact design. Both liquid hydrocarbons and methanol were studied as feedstocks, and methanol was chosen for a more detailed analysis.;An experimental study of methanol ATR, guided by modeling, was conducted. Mass transfer limitations at the pellet level were predicted to be significant under methanol reforming conditions. Simulations of an adiabatic reactor showed that the exothermic oxidation reaction is much faster than the endothermic reforming reaction. This imbalance in reaction rates leads to excessive catalyst bed temperatures in an adiabatic reactor. This problem was mitigated by distributing the air injection axially within the catalyst bed through porous ceramic fibers. An adiabatic laboratory ATR reactor was built and tested using this design. Simultaneous measurements of the steady-state temperature and composition axial profiles afforded the reactor model validation. Next, an isothermal single-fiber membrane reactor was built and tested under methanol steam reforming conditions. Porous alumina fiber-supported Pd/Ag alloy membranes prepared in-house in a related program were used. Performance characteristics of this membrane under reaction conditions were obtained. The ATR and isothermal membrane models enabled the design and optimization of an adiabatic "dual membrane" ATR reactor for hydrogen production. The study provides guidance for the membrane performance parameters required for a viable membrane reactor fuel processor. Porous ceramic fibers inserted through one end of the reactor provide non-selective distribution of air along the length of the oxidation zone of the reactor, while Pd/Ag membranes inserted through the other end provide selective hydrogen separation in a reforming zone. The results reveal that a maximum Pd/Ag membrane thickness of 4.6 mum is required to achieve the target productivity of 100 mol H2.m-3.s-1.
机译:尽管在该领域进行了超过二十年的研究,但尚未开发出用于PEM燃料电池制氢的商业可行的燃料处理器。本工作从对燃料处理器/燃料电池系统的建模研究开始。研究了将燃料处理反应器集成到整个系统中,并确定了影响处理器尺寸和系统效率的变量。展示了一种自动热重整(ATR)钯膜反应器,它以紧凑的设计提供了高生产率和高效率的潜力。研究了液态烃和甲醇作为原料,并选择了甲醇进行更详细的分析。;在建模的指导下进行了甲醇ATR的实验研究。预计在甲醇重整条件下,颗粒水平的传质限制非常明显。绝热反应器的模拟表明,放热氧化反应比吸热重整反应快得多。反应速率的这种不平衡导致在绝热反应器中催化剂床温度过高。通过将空气注入通过多孔陶瓷纤维轴向分布在催化剂床内,可以缓解该问题。使用该设计建造了绝热实验室ATR反应器并进行了测试。稳态温度和组成轴向轮廓的同时测量提供了反应器模型的验证。接下来,建立了等温单纤维膜反应器,并在甲醇蒸汽重整条件下进行了测试。使用在相关程序中内部制备的多孔氧化铝纤维负载的Pd / Ag合金膜。获得了该膜在反应条件下的性能特征。 ATR和等温膜模型可以设计和优化绝热的“双膜” ATR反应器用于制氢。该研究为可行的膜反应堆燃料处理器所需的膜性能参数提供了指导。穿过反应器一端插入的多孔陶瓷纤维沿反应器氧化区的长度提供了空气的非选择性分布,而穿过另一端插入的Pd / Ag膜则在重整区提供了选择性的氢分离。结果表明,要达到100 mol H2.m-3.s-1的目标生产率,最大的Pd / Ag膜厚度必须为4.6 mm。

著录项

  • 作者

    Lattner, James Richardson.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 341 p.
  • 总页数 341
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号