首页> 外文学位 >A Cartesian grid method for simulation of the unsteady aerodynamics of microscale flapping flight.
【24h】

A Cartesian grid method for simulation of the unsteady aerodynamics of microscale flapping flight.

机译:一种笛卡尔网格方法,用于模拟微尺度扑翼飞行的非定常空气动力学。

获取原文
获取原文并翻译 | 示例

摘要

Recent improvements in MEMS technology is making it possible to develop microscale mechanical devices capable of operating in gases and liquids at low Reynolds number. In the current work a method has been developed to be able to simulate the operation of such devices computationally. The method imposes arbitrary solid/fluid boundaries on Cartesian grids, thus avoiding complexities with body-fitted grid methods. This thesis explains the numerical approximations used for solving the governing equations, the discretization of the equations, and the implementation of the immersed fluid/solid boundary conditions. The method is validated by comparing computed results of flows over an infinitely thin plate, a cylinder, and a sphere, and it is found that the method predicts both steady and unsteady flows with sufficient accuracy. The method performs similarly whether the solid objects translates through the grid or remains fixed in the grid with an imposed flow field.; The method was then used to compute the fluid dynamics and force generation of a microscale flapping cantilever beam propulsion device. Both two-dimensional and three-dimensional flow features were explored, and the investigation showed that the cantilever produces thrust and can therefore potentially be used as a simple propulsion mechanism. Finally, the method was used to simulate an idealized model of fruit fly wing in hovering flight. The computed flow fields and force dynamics compared well with an equivalent experimental model, although some discrepancies were found due to a thicker wing being used in the computations for numerical reasons.
机译:MEMS技术的最新改进使得有可能开发出能够在低雷诺数下在气体和液体中运行的微型机械设备。在当前的工作中,已经开发了一种方法,该方法能够以计算方式模拟这种设备的操作。该方法在笛卡尔网格上施加了任意的固/液边界,从而避免了人体拟合网格方法的复杂性。本文阐述了用于求解控制方程的数值近似,方程的离散化以及沉浸流体/固体边界条件的实现。通过比较无限薄板,圆柱体和球体上的流动计算结果验证了该方法的有效性,发现该方法可以足够准确地预测稳态和非稳态流量。无论固体对象是平移通过网格还是保持固定在具有强制流场的网格中,该方法的执行效果相似。然后,该方法用于计算微型扑翼悬臂梁推进装置的流体动力学和力产生。研究了二维和三维流动特征,研究表明悬臂产生推力,因此有可能被用作简单的推进机制。最后,该方法被用来模拟理想的果蝇翼盘旋飞行模型。尽管由于数值原因在计算中使用了较厚的机翼,但发现了一些差异,但与等效的实验模型相比,计算出的流场和力动力学很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号