首页> 外文学位 >Simulation of three-phase separator performance.
【24h】

Simulation of three-phase separator performance.

机译:三相分离器性能仿真。

获取原文
获取原文并翻译 | 示例

摘要

Three phase horizontal separators of oil, gas and water are considered one of the main surface equipments in the upstream petroleum industry that have a significant impact on the treatment of the produced oil. The flow inside separators is a complex flow, three dimensional with complex internal geometries, turbulent and multiphase, thus presents a challenge for both experimental and numerical studies. Due to this complexity of flow nature besides the time and computational resources required, very few studies exist on the flow inside separators.;In this study, the mixture multiphase model, embedded in Fluent version 14, was used to simulate the multiphase flow and separator performance using mono-dispersed secondary phases (oil and water). The study is extended to include, the Discrete Phase Model (DPM) to investigate the oil carryover for various droplets distributions (poly-dispersed oil), with/without the effect of breakup and coalescence. This was done by modeling the gas compartment of the separator. In both models, the standard k-epsilon turbulence model was used to account for turbulence effects. Due to the absence of knowledge of field information about the droplet size distribution at the inlet of the separator, four different representative distributions (injected with 10, 30, 50 and 80 microns mean diameters) according to Rosin-Rammler size function were considered based on the design values of industrial separators. The simulation results are assessed in terms of overall separation efficiency, internals' effectiveness, local size distribution and residence time, and then compared against results from field tests of ADCO (Abu Dhabi Company for Onshore Oil Operations) and previously published simulations using the Eulerian-Eulerian and Population Balance models (PBM).;The separation efficiencies obtained using the mixture model were in acceptable agreement with previously published values, and ADCO test field results, except for the oil in water contents. In this case, the effect of the coarser mesh used by the mixture model had led to overestimating the diffusion term and hence generating less sharp interfaces and huge amount of oil in water.;The DPM simulation results showed that droplet breakup rarely occurred, especially for fine size distributions, while droplet coalescence was a more common phenomenon, especially in the Schoepentoeter. This behavior played a significant role in increasing the separation efficiency up to nearly 100% when the coalescence and breakup phenomena were introduced to the simulations of all size distributions cases. In general, the model provided acceptable separation efficiencies that had a good agreement with the PBM results at relatively large size distributions (> 80 micron). While for finer size distributions the model overestimated the coalescence rate in the Schoepentoeter region, leading to higher separation efficiencies compared to PBM. In addition, the effectiveness of Schoepentoeter was found to be essential for all size distributions, especially when the coalescence model was present. The other internals were found to contribute moderately to the overall separation efficiency. Moreover, the mean size distribution was found to gradually decrease across the separators' internals when there is no effect of coalescence. However, when coalescence is considered the mean size diameter was found to increase severely downstream the Schoepentoeter, leading to enhanced separation in the settling compartment.;Finally, the mean residence time (MRT) obtained by the DPM (35 sec - 40 sec) showed a good agreement with some of the existing approaches in the literature. However, a discrepancy was found against the published MRT calculated by PBM.
机译:油气,水和水的三相水平分离器被认为是上游石油工业中主要的地面设备之一,它对产出油的处理产生重大影响。分离器内部的流动是一个复杂的流动,三维,内部几何形状复杂,湍流和多相,因此对实验和数值研究都提出了挑战。由于流动性质的复杂性,除了所需的时间和计算资源外,对分离器内部的流动的研究很少。在本研究中,使用嵌入在Fluent版本14中的混合多相模型来模拟多相流动和分离器使用单分散次级相(油和水)的性能。该研究扩展到包括离散相模型(DPM),以研究油滴在各种液滴分布(多分散油)中的残留情况,有无破裂和聚结的影响。这是通过对分离器的气体室进行建模来完成的。在两个模型中,均使用标准的kε湍流模型来说明湍流效应。由于缺乏有关分离器入口的液滴尺寸分布的现场信息的知识,根据Rosin-Rammler尺寸函数,考虑了基于Rosin-Rammler尺寸函数的四种不同的代表性分布(分别注入10、30、50和80微米的平均直径)。工业分离器的设计价值。根据整体分离效率,内部效果,局部尺寸分布和停留时间对模拟结果进行评估,然后将其与ADCO(阿布扎比陆上石油运营公司)的现场测试结果以及先前使用Eulerian-欧拉和人口平衡模型(PBM)。使用混合模型获得的分离效率与先前公布的值和ADCO测试现场结果相一致,除了水中的油含量。在这种情况下,混合模型使用的较粗糙网格的效果导致高估了扩散项,从而产生了较不锋利的界面和水中大量的油。DPM仿真结果表明,很少发生液滴破裂,尤其是对于液滴分布较细,而液滴聚结是较常见的现象,尤其是在Schoepentoeter中。当将合并和分解现象引入所有尺寸分布情况的模拟时,此行为在将分离效率提高至近100%方面起着重要作用。通常,该模型在较大的尺寸分布(> 80微米)下提供了可接受的分离效率,与PBM结果具有很好的一致性。对于较细的粒度分布,该模型高估了Schoepentoeter地区的聚结率,与PBM相比,分离效率更高。此外,发现Schoepentoeter的有效性对于所有大小分布都是必不可少的,尤其是当存在合并模型时。发现其他内部因素对总体分离效率有中等贡献。此外,在没有聚结的影响时,发现平均尺寸分​​布在整个隔板内部逐渐减小。但是,当考虑到聚结时,发现Schoepentoeter下游的平均粒径急剧增加,从而导致沉降室中的分离增强。最后,由DPM获得的平均停留时间(MRT)(35秒-40秒)显示与文献中现有的一些方法有很好的一致性。但是,发现与PBM计算的已发布的MRT不一致。

著录项

  • 作者

    Qaroot, Yahya Fathi.;

  • 作者单位

    The Petroleum Institute (United Arab Emirates).;

  • 授予单位 The Petroleum Institute (United Arab Emirates).;
  • 学科 Mechanical engineering.;Chemical engineering.
  • 学位 M.S.
  • 年度 2013
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号