首页> 外文学位 >Systems approach of agricultural residue utilization for value-added chemical production.
【24h】

Systems approach of agricultural residue utilization for value-added chemical production.

机译:农残利用增值化工生产的系统方法。

获取原文
获取原文并翻译 | 示例

摘要

More than 120 dry million tons of nutrient-rich animal wastes is annually produced in the U.S., which causes a series of negative environmental consequences such as odor problem, greenhouse gas emission and ground water/surface water contamination. Anaerobic digestion (AD) is one of the widely accepted animal manure management technologies that can not only control odor but also generate renewable energy biogas. Anaerobic digestion technology has advantages of robustness, feedstock flexibility, relatively simple implementation, and low capital investment in treating high-strength organic wastes. However, it is also challenged by: 1) liquid digestate has relatively high levels of chemical oxygen demand and nutrients (phosphorus and nitrogen); 2) more than 50% of carbon is still remained in the solid digestate; 3) biogas has high contents of impurities such as H2S, which requires a complicated purification prior to further uses for energy production; and 4) a relatively large quantity of CO2 in the biogas reduce the energy value of biogas and decrease the efficiency of biogas energy production. Therefore, in order to advance the application of anaerobic digestion, the goal of this study is to apply systems approaches to develop an integrated process to address the aforementioned challenges and explore alternative value-added outputs from AD. The integrated process includes anaerobic digestion of animal wastes, electrocoagulation, algal cultivation, and fungal culture for fine chemical production and CO2 utilization. Anaerobic digestion first utilizes some nutrients in animal waste to produce methane. The liquid digestate from anaerobic digestion was then treated by electrocoagulation to reclaim water. Biogas was also incorporated into the electrocoagulation to facilitate water reclamation, removal of impurities (e.g. H2S) from biogas and to improve energy efficiency. Algal cultivation was applied on the reclaimed EC water to further remove nitrogen, fix CO2, and accumulate lipid-rich algal biomass. A fungal fermentation was applied on solid digestate using the EC treated liquid digestate as the processing water to produce a value-added biopolymer -- Chitin. In addition, this study also conducted an in-depth investigation on using CO2 derived formate as both carbon and energy sources to simultaneously sequester CO2 and enhance fungal lipid accumulation. With successful completion of the study, an environmental friendly and economically feasible animal waste utilization concept has been elucidated. Consequently, implementing such system could make a major contribution to realizing sustainable animal agriculture in the near future.
机译:美国每年生产超过120万吨干燥的富含营养的动物废物,这造成了一系列负面的环境后果,例如气味问题,温室气体排放和地下水/地表水污染。厌氧消化(AD)是一种广泛接受的动物粪便管理技术,不仅可以控制气味,而且还可以产生可再生能源沼气。厌氧消化技术具有坚固,原料灵活,实施相对简单以及在处理高强度有机废物方面投资少的优点。但是,它也受到以下挑战:1)液体消化物具有较高水平的化学需氧量和养分(磷和氮); 2)固体消化物中仍残留超过50%的碳; 3)沼气中的H2S等杂质含量高,在进一步用于能源生产之前,需要进行复杂的净化处理; 4)沼气中相对大量的二氧化碳会降低沼气的能源价值,降低沼气能源生产效率。因此,为了促进厌氧消化的应用,本研究的目的是应用系统方法来开发综合过程来应对上述挑战,并探索AD的替代增值产出。集成过程包括动物粪便的厌氧消化,电凝,藻类培养和真菌培养,用于精细化工生产和CO2利用。厌氧消化首先利用动物粪便中的一些养分来产生甲烷。厌氧消化后的液体消化物随后通过电凝处理以回收水。沼气也被并入电凝中,以促进水的回收利用,从沼气中去除杂质(例如H2S)并提高能源效率。在回收的EC水上进行藻类培养,以进一步去除氮,固定CO2并积累富含脂质的藻类生物质。使用经EC处理的液体消化物作为加工水,对固体消化物进行真菌发酵,以生产增值的生物聚合物-甲壳素。此外,本研究还对使用二氧化碳衍生的甲酸盐作为碳和能源同时封存二氧化碳和增强真菌脂质积累进行了深入研究。随着研究的成功完成,已经阐明了环境友好和经济可行的动物废物利用概念。因此,实施这种系统可以在不久的将来为实现可持续的动物农业做出重大贡献。

著录项

  • 作者

    Liu, Zhiguo.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Agricultural engineering.;Microbiology.;Engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号