首页> 外文学位 >Well-to-Wheel Energy, Emissions, and Cost Analysis of Electricity and Fuel Used in Conventional and Electrified Vehicles, and Their Connection to a Sustainable Energy Infrastructure.
【24h】

Well-to-Wheel Energy, Emissions, and Cost Analysis of Electricity and Fuel Used in Conventional and Electrified Vehicles, and Their Connection to a Sustainable Energy Infrastructure.

机译:常规和电动车辆使用的轮到车辆的能量,排放和成本分析,以及它们与可持续能源基础设施的联系。

获取原文
获取原文并翻译 | 示例

摘要

Recent legislation by the United States Environmental Protection Agency (EPA) requires record low vehicle tailpipe emissions, necessitating research and development in the areas of lowering conventional (i.e., internal combustion engine) vehicle emissions rates while facilitating the widespread introduction of electrified vehicles. Currently, the EPA views Battery Electric Vehicles as having zero emissions. However, a number of studies illustrate this is not the case when considering the emissions produced in creating the electricity through a full Life Cycle Analysis. As a result, proper comparison of electrified and conventional vehicles must include a complete Well-to-Wheel (WtW) study including the emissions generated through production and use of liquid petroleum and biofuels. As a result, this work provides a full WtW investigation into fuel, electricity, and production analysis of conventional and electrified vehicles. This is supported by a thorough literature review of current and projected future technology, extrapolating to a fleet analysis, as well as applying the technology to an advanced electricity infrastructure.;In the following effort, the first chapter simply provides a background into these different areas in order to help set the stage. Chapter 2 explores conventional vehicle emissions profiles predicting future requirements of engine and catalytic exhaust aftertreatment technologies. Findings illustrate that low temperature climates and aging both adversely affect a vehicle's ability to perform proper emissions reductions. This chapter additionally demonstrates an improvement in the fuel use emissions profiles of Argonne National Laboratories' Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model through the update of embedded time-sheet emissions lookup tables using EPA's Motor Vehicle Emissions Simulator (MOVES). This simulation package utilizes a statistical database of over 3000 counties in the continental United States in calculating the emissions profile of various vehicle and fuel type combinations, updating the current tables utilized in GREET.;Chapter 3 utilizes these efforts in performing a life cycle analysis of a 1974 Volkswagen Super Beetle converted to a plug-in series hybrid. This work utilizes GREET in exploring the WtW fuel use emissions profile, as well as estimating the energy and emissions savings through reusing a number of stock vehicle components in the conversion. A vehicle dynamics model supports this analysis, calculating the average fuel use in a typical city/highway drive cycle.;The fourth chapter expands upon this work, analyzing an 800+ vehicle fleet in a comparative analysis between electrified vehicles and their conventional counterparts. This work utilizes four simplified vehicle dynamics models, focusing on ten vehicles with various powertrains and fuel use algorithms. These models calculate the average fuel consumption of these vehicles, employing the GREET model in calculating the emissions profiles on a per-mile and yearly total basis. Furthermore, a full cost analysis of fuel and vehicle combinations demonstrates the economic impacts of electrifying the vehicle fleet.;Finally, Chapter 5 seeks to support future research into electrified vehicles for vehicle-to-grid technology, energy storage, and infrastructure control through the design and construction of a small-scale smart grid in collaboration with a previous University of Kansas EcoHawks senior design team. This design consists of a renewable and conventional energy source, a grid load, bulk and dynamic grid storage, and a full sensory and control system. The final design meets the two requirements of a smart grid set forth by the Department of Energy: decentralization of energy production and storage, and providing two-way communication from end users or appliances and the energy network.
机译:美国环境保护署(EPA)最近的立法要求创纪录的低汽车尾气排放,这需要在降低传统(即内燃机)汽车排放率的领域进行研究和开发,同时促进电动汽车的广泛推广。目前,EPA将电池电动车视为零排放。但是,许多研究表明,在通过完整的生命周期分析来考虑发电过程中产生的排放时,情况并非如此。因此,对电动车辆和常规车辆的适当比较必须包括完整的“轮到车轮(WtW)”研究,其中包括通过生产和使用液体石油和生物燃料产生的排放。结果,这项工作对常规和电动车辆的燃料,电力以及生产分析进行了全面的WwW调查。这是通过对当前和将来的技术进行全面的文献综述,推断出车队分析以及将该技术应用于先进的电力基础设施来支持的;在接下来的工作中,第一章只是简单介绍了这些不同领域的背景知识。为了帮助搭建舞台。第2章探讨了传统的车辆排放概况,预测了发动机和催化废气后处理技术的未来需求。研究结果表明,低温气候和老化都会对车辆执行适当的减排量产生不利影响。本章还通过使用EPA的机动车排放模拟器更新嵌入式工时表排放查询表,展示了阿贡国家实验室的温室气体,可调节的排放量和运输中的能源消耗(GREET)模型的燃料使用排放特征的改进。移动)。该模拟软件包利用了美国大陆上3000多个县的统计数据库来计算各种车辆和燃料类型组合的排放概况,更新了GREET中使用的当前表格;第3章利用这些努力对产品进行了生命周期分析1974年大众超级甲壳虫(Volkswagen Super Beetle)改装为插电式混合动力汽车。这项工作利用GREET来探索WtW燃料使用排放概况,并通过在转换中重复使用许多库存车辆部件来估算能源和排放节省量。车辆动力学模型支持该分析,计算出典型城市/高速公路行驶循环中的平均燃料使用量。第四章在此工作的基础上进行了扩展,分析了800辆以上的车队,以进行电动汽车与传统汽车之间的比较分析。这项工作利用了四个简化的车辆动力学模型,重点是十辆具有各种动力总成和燃料使用算法的车辆。这些模型使用GREET模型计算每英里和每年总排放量的排放量,从而计算出这些车辆的平均油耗。此外,对燃油和车辆组合进行的全面成本分析证明了车队电气化的经济影响。最后,第5章力求通过以下方式支持对用于车辆对电网技术,能源存储和基础设施控制的电动汽车的未来研究与以前的堪萨斯大学EcoHawks高级设计团队合作设计和建造了小型智能电网。该设计由可再生和常规能源,电网负载,大容量和动态电网存储以及完整的传感和控制系统组成。最终设计满足了能源部提出的智能电网的两个要求:能源生产和存储的分散化,以及提供来自最终用户或设备与能源网络的双向通信。

著录项

  • 作者

    Strecker, Bryan Anthony.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Engineering Automotive.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2012
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号