首页> 外文学位 >Nuclear spin relaxation of polycrystalline 129 xenon.
【24h】

Nuclear spin relaxation of polycrystalline 129 xenon.

机译:多晶129氙的核自旋弛豫。

获取原文
获取原文并翻译 | 示例

摘要

Through spin exchange optical pumping, it is possible to achieve upwards of 30% nuclear spin polarization in 129Xe with an NMR signal enhancement of some 5 orders of magnitude over typical thermal signals. Hyperpolarized 129Xe has thus found application in several leading-edge technologies. At 1 T and 4.2 K, the characteristic relaxation time of enriched polycrystalline 129Xe (86% 129Xe, 0.1% 131Xe) is well over 200 hrs, sufficient for long-term storage and transport.; Longitudinal nuclear spin relaxation of 129Xe at more convenient fields from 1 to 200 G is studied in detail. Significant structure in relaxation times vs. magnetic field is seen; the most prominent new finding being a sharp local long-time T 1 maximum of 1000 mins at ≈3 G. Such structure has not been observed in previous measurements of natural Xe. Below temperatures of 10 K, relaxation can be attributed to cross relaxation with 131Xe, mediated by spin diffusion. Measurements of 129Xe relaxation as a function of magnetic field, temperature and Xe isotopic content are reported and compared with expected theoretical behaviors.; It is seen that the characteristic nuclear spin relaxation of enriched 129Xe at 4.2 K is nonexponential at these low fields. For fields between 10 G and 200 G, these nonexponential relaxation curves can be fit well with a specific spin diffusion model. Below 10 G no such fit is possible and thus quantum mechanical details of the coupling between 129Xe, 131Xe and the bulk lattice are considered. These findings support the hypothesis that cross relaxation with 131Xe is indeed a dominant actor in the nuclear spin relaxation of polycrystalline 129 Xe at such low fields and low temperatures.
机译:通过自旋交换光泵浦,有可能在129Xe中实现30%以上的核自旋极化,并且NMR信号比典型的热信号增强约5个数量级。因此,超极化129Xe已在多种前沿技术中得到应用。在1 T和4.2 K时,富集的多晶129Xe(86%129Xe,0.1%131Xe)的特征弛豫时间远远超过200小时,足以长期存储和运输。详细研究了在1至200 G的更方便的磁场中129Xe的纵向核自旋弛豫。可以看到弛豫时间与磁场的关系明显。最突出的新发现是在3 g附近1000分钟的尖锐的局部长时间T 1最大值。在以前的天然Xe测量中没有观察到这种结构。低于10 K的温度,弛豫可归因于131Xe的交叉弛豫,由自旋扩散介导。报告了129Xe弛豫随磁场,温度和Xe同位素含量的变化的测量结果,并与预期的理论行为进行了比较。可以看出,在这些低电场下,富集的129Xe在4.2 K时的特征性核自旋弛豫是非指数的。对于介于10 G和200 G之间的场,这些非指数弛豫曲线可以与特定的自旋扩散模型很好地拟合。低于10 G,则不可能实现这样的拟合,因此要考虑129Xe,131Xe与块状晶格之间耦合的量子力学细节。这些发现支持了这样的假说:在如此低的磁场和低温下,131Xe的交叉弛豫确实是多晶129Xe的核自旋弛豫的主要因素。

著录项

  • 作者

    Samuelson, Gary Lee, Jr.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Physics Atomic.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号