首页> 外文学位 >Three-Dimensional Biomimetic Patterning to Guide Cellular Migration and Organization.
【24h】

Three-Dimensional Biomimetic Patterning to Guide Cellular Migration and Organization.

机译:指导细胞迁​​移和组织的三维仿生图案。

获取原文
获取原文并翻译 | 示例

摘要

This thesis develops a novel photopatterning strategy for biomimetic scaffolds that enables spatial and biochemical control of engineered cellular architectures, such as the microvasculature. Intricate tools that allow for the three dimensional (3D) manipulation of biomaterial microenvironments will be critical for organizing cellular behavior, directing tissue formation, and ultimately, developing functional therapeutics to treat patients with critical organ failure. Poly(ethylene glycol) (PEG) based hydrogels, which without modification naturally resist protein adsorption and cellular adhesion, were utilized in combination with a two-photon laser patterning approach to covalently immobilize specific biomolecules in custom-designed, three-dimensional (3D) micropatterns. This technique, known as two-photon laser scanning lithography (TPLSL), was shown in this thesis to possess the capability to micropattern multiple different biomolecules at modular concentrations into a single hydrogel microenvironment over a broad range of size scales with high 3D resolution. 3D cellular adhesion and migration were then explored in detail using time-lapse confocal microscopy to follow cells as they migrated along micropatterned tracks of various 3D size and composition. Further, in a valuable modification of TP-LSL, images from the endogenous microenvironment were converted into instructions to precisely direct the laser patterning of biomolecules within PEG-based hydrogels. 3D images of endogenous microvasculature from various tissues were directly converted into 3D biomolecule patterns within the hydrogel scaffold with precise pattern fidelity. While tissue engineers have previously demonstrated the formation of vessels through the encapsulation of endothelial cells and pericyte precursor cells within PEG-based hydrogels, the vessel structure had been random, uncoordinated, and therefore, ultimately non-functional. This thesis has utilized image guided TP-LSL to pattern biomolecules into a 3D structure that directs the organization of vessels to mimic that of the endogenous tissue vasculature. TP-LSL now stands as a valuable tool to control the microstructure of engineered cellular architectures, thereby providing a critical step in the development of cellularized scaffolds into functional tissues. Ultimately, this thesis develops new technologies that advance the field of regenerative medicine towards the goal of engineering viable organs to therapeutically treat the 18 patients who die every day waiting on the organ transplant list.
机译:本论文开发了一种新型的仿生支架光图案化策略,该策略能够对工程化的细胞结构(例如微脉管系统)进行空间和生化控制。允许对生物材料微环境进行三维(3D)操作的复杂工具对于组织细胞行为,指导组织形成以及最终开发功能性疗法来治疗具有严重器官衰竭的患者至关重要。基于聚乙二醇(PEG)的水凝胶无需修饰即可自然抵抗蛋白质的吸附和细胞粘附,可与双光子激光图案化方法结合使用,以共价固定特定的生物分子到定制设计的三维(3D)中微图案。这项技术被称为双光子激光扫描光刻技术(TPLSL),在本文中表明,它具有将多种不同生物分子以模块化浓度微模式化为单个水凝胶微环境的能力,并且具有较高的3D分辨率,可将其规模化。然后使用延时共聚焦显微镜详细研究3D细胞的粘附和迁移情况,以追踪细胞沿各种3D大小和组成的微图案轨迹迁移的过程。此外,在TP-LSL的有价值的修改中,来自内源微环境的图像被转换为​​指令,以精确地指导基于PEG的水凝胶内生物分子的激光图案化。来自各种组织的内源性微脉管系统的3D图像直接以精确的模式保真度转换为水凝胶支架内的3D生物分子模式。尽管组织工程师先前已经证明通过将内皮细胞和周细胞前体细胞封装在基于PEG的水凝胶中来形成血管,但血管结构却是随机的,不协调的,因此最终是无功能的。本论文利用图像引导的TP-LSL将生物分子图案化为3D结构,该结构指导血管的组织模仿内源组织脉管的组织。 TP-LSL现在成为控制工程化细胞结构微结构的有价值的工具,从而为将细胞化支架发展为功能性组织提供了关键步骤。最终,本论文开发了新技术,将再生医学领域朝着工程化可行器官的目标发展,以治疗性地治疗每天在器官移植清单上等待死亡的18名患者。

著录项

  • 作者

    Hoffmann, Joseph Charles.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Engineering Biomedical.;Chemistry Polymer.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号