首页> 外文学位 >Automated negotiation for complex multi-agent resource allocation.
【24h】

Automated negotiation for complex multi-agent resource allocation.

机译:复杂多代理程序资源分配的自动协商。

获取原文
获取原文并翻译 | 示例

摘要

The problem of constructing and analyzing systems of intelligent, autonomous agents is becoming more and more important. These agents may include people, physical robots, virtual humans, software programs acting on behalf of human beings, or sensors. In a large class of multi-agent scenarios, agents may have different capabilities, preferences, objectives, and constraints. Therefore, efficient allocation of resources among multiple agents is often difficult to achieve. Automated negotiation (bargaining) is the most widely used approach for multi-agent resource allocation and it has received increasing attention in the recent years. However, information uncertainty, existence of multiple contracting partners and competitors, agents' incentive to maximize individual utilities, and market dynamics make it difficult to calculate agents' rational equilibrium negotiation strategies and develop successful negotiation agents behaving well in practice. To this end, this thesis is concerned with analyzing agents' rational behavior and developing negotiation strategies for a range of complex negotiation contexts.;First, we consider the problem of finding agents' rational strategies in bargaining with incomplete information. We focus on the principal alternating-offers finite horizon bargaining protocol with one-sided uncertainty regarding agents' reserve prices. We provide an algorithm based on the combination of game theoretic analysis and search techniques which finds agents' equilibrium in pure strategies when they exist. Our approach is sound, complete and, in principle, can be applied to other uncertainty settings. Simulation results show that there is at least one pure strategy sequential equilibrium in 99.7% of various scenarios. In addition, agents with equilibrium strategies achieved higher utilities than agents with heuristic strategies.;Next, we extend the alternating-offers protocol to handle concurrent negotiations in which each agent has multiple trading opportunities and faces market competition. We provide an algorithm based on backward induction to compute the subgame perfect equilibrium of concurrent negotiation. We observe that agents' bargaining power are affected by the proposing ordering and market competition and for a large subset of the space of the parameters, agents' equilibrium strategies depend on the values of a small number of parameters. We also extend our algorithm to find a pure strategy sequential equilibrium in concurrent negotiations where there is one-sided uncertainty regarding the reserve price of one agent.;Third, we present the design and implementation of agents that concurrently negotiate with other entities for acquiring multiple resources. Negotiation agents are designed to adjust (1) the number of tentative agreements and (2) the amount of concession they are willing to make in response to changing market conditions and negotiation situations. In our approach, agents utilize a time-dependent negotiation strategy in which the reserve price of each resource is dynamically determined by (1) the likelihood that negotiation will not be successfully completed, (2) the expected agreement price of the resource, and (3) the expected number of final agreements. The negotiation deadline of each resource is determined by its relative scarcity. Since agents are permitted to decommit from agreements, a buyer may make more than one tentative agreement for each resource and the maximum number of tentative agreements is constrained by the market situation. Experimental results show that our negotiation strategy achieved significantly higher utilities than simpler strategies.;Finally, we consider the problem of allocating networked resources in dynamic environment, such as cloud computing platforms, where providers strategically price resources to maximize their utility. While numerous auction-based approaches have been proposed in the literature, our work explores an alternative approach where providers and consumers negotiate resource leasing contracts. We propose a distributed negotiation mechanism where agents negotiate over both a contract price and a decommitment penalty, which allows agents to decommit from contracts at a cost. We compare our approach experimentally, using representative scenarios and workloads, to both combinatorial auctions and the fixed-price model, and show that the negotiation model achieves a higher social welfare.
机译:构建和分析智能,自治代理的系统的问题变得越来越重要。这些代理可以包括人,物理机器人,虚拟人,代表人类运行的软件程序或传感器。在大量的多代理场景中,代理可能具有不同的功能,偏好,目标和约束。因此,通常难以实现多个代理之间的资源有效分配。自动化协商(讨价还价)是用于多主体资源分配的最广泛使用的方法,并且近年来受到越来越多的关注。但是,由于信息不确定性,存在多个签约合作伙伴和竞争者,代理商最大化个人效用的动机以及市场动态,使得难以计算代理商的理性均衡谈判策略并发展出行为良好的成功谈判代理商。为此,本论文着重于分析代理商的理性行为并针对一系列复杂的谈判环境制定谈判策略。首先,我们考虑了在信息不完全的讨价还价中寻找代理商理性策略的问题。我们关注于主要的交替报价有限期议价协议,其关于代理商的底价存在单方面的不确定性。我们提供了一种基于博弈论分析和搜索技术相结合的算法,该算法可以在纯策略存在时找到他们的均衡。我们的方法是健全,完整的,并且原则上可以应用于其他不确定性设置。仿真结果表明,在99.7%的各种情况下,至少有一个纯策略顺序均衡。此外,具有均衡策略的代理比具有启发式策略的代理具有更高的效用。接下来,我们扩展了交替报价协议以处理同时进行的协商,在该协商中,每个代理都有多个交易机会并面临市场竞争。我们提供了一种基于后向归纳的算法来计算并发协商的子博弈完美均衡。我们观察到,代理商的议价能力受到提议的订货和市场竞争的影响,并且对于很大一部分参数空间,代理商的均衡策略取决于少量参数的值。我们还扩展了算法以在并发谈判中找到一个纯策略的顺序均衡,其中一个代理的底价存在单方面的不确定性;第三,我们提出了与其他实体同时进行谈判以获取多个代理的代理的设计和实现。资源。谈判代理旨在调整(1)临时协议的数量和(2)他们愿意针对不断变化的市场条件和谈判情况做出的让步数量。在我们的方法中,代理利用时间相关的协商策略,其中每种资源的保留价由以下因素动态确定:(1)协商无法成功完成的可能性;(2)资源的预期协议价格;以及( 3)最终协议的预期数量。每个资源的协商截止日期取决于其相对稀缺性。由于允许代理商取消协议,因此买方可以为每种资源签订一份以上的临时协议,并且临时协议的最大数量受市场情况的限制。实验结果表明,与简单策略相比,我们的协商策略具有更高的实用性。最后,我们考虑了在动态环境(例如云​​计算平台)中分配网络资源的问题,在该环境中,提供商通过策略性定价资源以最大化其实用性。尽管文献中提出了许多基于拍卖的方法,但我们的工作探索了供方和消费者协商资源租赁合同的替代方法。我们提出了一种分布式协商机制,在这种机制下,代理商可以就合同价格和解除承诺罚款进行协商,这可以使代理商从成本中退出合同。我们使用代表性的场景和工作量,通过实验将我们的方法与组合拍卖和固定价格模型进行了比较,结果表明,协商模型实现了更高的社会福利。

著录项

  • 作者

    An, Bo.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 259 p.
  • 总页数 259
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号