首页> 外文学位 >Modeling, control and maximum power point tracking (MPPT) of Doubly-Fed Induction Generator (DFIG) wind power system.
【24h】

Modeling, control and maximum power point tracking (MPPT) of Doubly-Fed Induction Generator (DFIG) wind power system.

机译:双馈感应发电机(DFIG)风力发电系统的建模,控制和最大功率点跟踪(MPPT)。

获取原文
获取原文并翻译 | 示例

摘要

Wind power is the fastest growing renewable energy and is promising to be the number one source of clean energy in the near future. Among various generators used to convert wind energy, the Doubly-Fed Induction Generator (DFIG) has attracted more attention due to its variable speed, higher energy capture efficiency and improved power quality. The DFIG system has back-to-back converters, one on the rotor side and one on the stator side. The two converters act as an optimal operation tracking interface between the generator and the grid or other loads. To achieve the desirable output power, field oriented control (FOC) or vector control is applied to both the rotor- and the stator-side converters.;To achieve high efficiency in wind power systems, the maximum power point tracking (MPPT) of the variable-speed operation has attracted a lot of attention. Most MPPT methods either rely on wind speed measurement or on complicated estimations and online calculations. As a result, these methods are either expensive due to the need of wind speed sensors or suffer from inaccuracy due to variations of wind turbine system models. This dissertation proposes a novel self-tuning reference power MPPT curve. This reference power curve is simply updated by incrementally updating the curve coefficients. The method is robust and is independent of the wind turbine model. Also, regarding MPPT stability, this dissertation presents the steady state and dynamic analyses of this MPPT method. A single-pole transfer function that describes the effect of variations of wind speed on the rotor speed is obtained by applying small signal analysis on the turbine-rotor mechanical system.;To verify the wind power control system and the proposed MPPT analysis, both simulation and experimental platforms are developed. First, the DFIG system, including a wind turbine, a generator, power electronic converters and power system grid are modeled. All of the control algorithms and operation modes are simulated. The active power is always controlled at maximum output while the reactive power is controlled to achieve a particular power factor or line voltage. Second, a complete DFIG wind power test bench including a wind turbine emulator is designed and built. The back-to-back converters are designed to control the DFIG. A Microchip dsPIC33 is used to control both turbine emulator and the converters. The utility grid integration is implemented with assistance of a Phase Locked Loop (PLL) and the rotor currents of DFIG are controlled to vary the operation point. Then, the proposed MPPT is simulated and incremental current control is implemented for optimal power tracking. The incremental change is not stopped until the optimal output power is reached. Also, both simulation and experimental results confirm the dynamic behavior of rotor speed predicted by the proposed transfer function.;The real-time close-loop power control and Fault Ride Through (FRT) could be studied in the future based on the developed simulation and experimental systems. While the test bench is designed to flexibly fitting future wind research, more programming efforts are required to implement more complicated algorithms.
机译:风能是增长最快的可再生能源,并有望在不久的将来成为清洁能源的第一大来源。在用于转换风能的各种发电机中,双馈感应发电机(DFIG)因其变速,更高的能量捕获效率和改进的电能质量而引起了更多关注。 DFIG系统具有背靠背的转换器,一个在转子侧,一个在定子侧。这两个转换器充当发电机与电网或其他负载之间的最佳运行跟踪接口。为了获得理想的输出功率,将磁场定向控制(FOC)或矢量控制应用于转子侧和定子侧变流器。为了在风力发电系统中实现高效率,风力发电系统的最大功率点跟踪(MPPT)变速操作引起了很多关注。大多数MPPT方法要么依赖于风速测量,要么依赖于复杂的估算和在线计算。结果,由于需要风速传感器,这些方法要么昂贵,要么由于风力涡轮机系统模型的变化而遭受不准确性。本文提出了一种新颖的自整定参考功率MPPT曲线。通过逐步更新曲线系数,可以简单地更新此参考功率曲线。该方法是鲁棒的并且独立于风力涡轮机模型。此外,关于MPPT的稳定性,本文介绍了该MPPT方法的稳态和动态分析。通过在汽轮机转子机械系统上进行小信号分析,获得了描述风速变化对转子速度影响的单极传递函数。为了验证风电控制系统和拟议的MPPT分析,两种仿真开发实验平台。首先,对DFIG系统进行建模,包括风力涡轮机,发电机,电力电子转换器和电力系统电网。模拟了所有控制算法和操作模式。有功功率始终控制在最大输出,而无功功率则控制为达到特定的功率因数或线路电压。其次,设计并建造了一个完整的DFIG风力测试台,包括一个风力发电机仿真器。背对背转换器旨在控制DFIG。 Microchip dsPIC33用于控制涡轮仿真器和转换器。公用电网集成是在锁相环(PLL)的帮助下实现的,并且控制DFIG的转子电流以改变工作点。然后,对提出的MPPT进行仿真,并实现增量电流控制以实现最佳功率跟踪。在达到最佳输出功率之前,增量变化不会停止。仿真和实验结果均证实了所提出的传递函数所预测的转子速度的动态行为。未来,在此基础上,可以研究实时闭环功率控制和故障穿越(FRT)。实验系统。尽管测试台的设计可以灵活地适应未来的风能研究,但要实现更复杂的算法,还需要进行更多的编程工作。

著录项

  • 作者

    Zou, Yu.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Alternative Energy.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号