首页> 外文学位 >Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications.
【24h】

Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications.

机译:用于生物传感器应用的生物功能化垂直对齐的二氧化硅纳米弹簧表面的交流阻抗谱分析。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, a process of vertically-aligned (silica) nanosprings (VANS) based biosensor development is presented. Alternating current (AC) impedance spectroscopy has been used to analyze sensor response as a function of saline phosphate (SP) buffer and biological solutions. The sensor is a parallel plate capacitor consisting of two glass substrates coated with indium tin oxide (ITO), where the VANS [or randomly-aligned nanosprings (RANS)] grown on one substrate serve as the dielectric spacer layer. The response of a VANS device as a function of ionic concentration in SP buffer was examined and an equivalent circuit model was developed. The results demonstrated that VANS sensors exhibited greater sensitivity to the changes in SP concentration relative to the ITO sensors, which serve as controls. The biofunctionalized VANS surface via physisorption and the cross-linker method demonstrates the repeatability, specificity, and selectivity of the binding. The physisorption of biotinylated immunoglobulin G (B-IgG) onto the VANS surface simplifies the whole sensing procedure for the detection of glucose oxidase, since the avidin-conjugated glucose oxidase (Av-GOx) can directly be immobilized on the B-IgG. The cross linker method involves the covalent attachment of antibodies onto the functionalized VANS surface via imine bond. The experiments revealed that the VANS sensor response is solely the result of the interaction of target molecule i.e. mouse IgG with the probe layer, i.e. goat antimouse IgG (GalphaM IgG). It was determined that VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls above 100 Hz, which indicates that the addition of biomolecules inhibits the diffusion of ions and changes the effective dielectric response of the VANS via biomolecular polarization. The study of ionic transport in nanosprings suggested that conductance follows a scaling law. It was demonstrated that a VANS-based device exhibits a greater magnitude of change relative to the RANS device below 10 kHz, which has equivalent property of the ITO controls. This dissertation demonstrates the potential for VANS as a novel nanomaterial platform for the development of highly sensitive, selective, low cost, and label free biosensors.
机译:本文提出了一种基于垂直排列的(二氧化硅)纳米弹簧(VANS)生物传感器的开发过程。交流(AC)阻抗谱已用于分析传感器响应,该响应是磷酸盐(SP)缓冲液和生物溶液的函数。该传感器是一个平行板电容器,由两个涂有铟锡氧化物(ITO)的玻璃基板组成,其中生长在一个基板上的VANS [或随机排列的纳米弹簧(RANS)]用作介电间隔层。检查了VANS器件响应与SP缓冲液中离子浓度的关系,并开发了等效电路模型。结果表明,相对于用作控制的ITO传感器,VANS传感器对SP浓度的变化表现出更高的敏感性。通过物理吸附和交联剂方法对生物功能化的VANS表面进行展示,证明了结合的可重复性,特异性和选择性。生物素化免疫球蛋白G(B-IgG)在VANS表面的物理吸附简化了检测葡萄糖氧化酶的整个检测过程,因为抗生物素蛋白偶联的葡萄糖氧化酶(Av-GOx)可以直接固定在B-IgG上。交联剂方法涉及抗体通过亚胺键共价附接到功能化的VANS表面上。实验表明,VANS传感器响应仅是靶分子即小鼠IgG与探针层即山羊抗小鼠IgG(GalphaM IgG)相互作用的结果。已确定相对于高于100 Hz的对照,基于VANS的传感器在连续生物层之间表现出更大的变化幅度,这表明添加生物分子会抑制离子的扩散并通过生物分子改变VANS的有效介电响应偏振。对纳米弹簧中离子迁移的研究表明,电导遵循比例定律。已经证明,相对于10 kHz以下的RANS器件,基于VANS的器件表现出更大的变化幅度,这具有ITO控件的等效属性。本文证明了VANS作为开发高灵敏度,选择性,低成本和无标签生物传感器的新型纳米材料平台的潜力。

著录项

  • 作者

    Timalsina, Yukta P.;

  • 作者单位

    University of Idaho.;

  • 授予单位 University of Idaho.;
  • 学科 Physics Condensed Matter.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号