首页> 外文学位 >First-Order Analysis of Dye Sensitized Solar Cell Performance Tuning via Oxygen Partial Pressure Variation during Annealing.
【24h】

First-Order Analysis of Dye Sensitized Solar Cell Performance Tuning via Oxygen Partial Pressure Variation during Annealing.

机译:通过退火过程中氧分压变化对染料敏化太阳能电池性能进行的一阶分析。

获取原文
获取原文并翻译 | 示例

摘要

Dye sensitized solar cells (DSSC) can be a low cost alternative to conventional solar cells. The nanoscale semiconductor TiO2 is annealed during DSSC processing to create electron pathways to a thin conductive oxide layer (TCO). An unfortunate consequence of air annealing is a simultaneous decrease in the electrical conductivity of the TCO layer. Since electron transport in DSSC's is strongly dependent on oxygen vacancy density, DSSC performance can be tuned by adjusting the oxygen content during annealing because of the resulting decrease (or increase) in device resistances. Indium tin oxide (ITO) conductive glass substrates were annealed in different oxygen level environments. DSSC's were fabricated from TiO2 films that were also annealed in different oxygen level environments. The resistances of the ITO and performance of the DSSC were measured. Results showed that low oxygen annealing during DSSC processing prevents significant increases in the resistivity of ITO. It also causes an increase in open circuit voltage (VOC) and a decrease in short circuit current (ISC). Previous work suggests that the conductivity of TiO2 increases in low oxygen annealing. This increased electrical conductivity was modeled as a reduced TiOx layer formed during low oxygen annealing. It was posited that this conductive TiOx layer has the desirable effect of increased shunt resistance. However, the conductive layer can also restrict electron flow from the electrolyte to the dye either by reducing electron drift and diffusion. These resulted in the changes in VOC and ISC observed. This hypothesis was verified through the use of a novel "Conductive Layer Resistance Model".
机译:染料敏化太阳能电池(DSSC)可以是传统太阳能电池的低成本替代品。纳米级半导体TiO2在DSSC处理过程中进行退火,以形成通往薄导电氧化物层(TCO)的电子路径。空气退火的不幸后果是同时降低了TCO层的电导率。由于DSSC中的电子传输强烈依赖于氧的空位密度,因此可以通过调节退火过程中的氧含量来调整DSSC的性能,因为这样会导致器件电阻降低(或增加)。氧化铟锡(ITO)导电玻璃基板在不同的氧气水平环境中进行退火。 DSSC是由TiO2薄膜制成的,该薄膜也在不同的氧气水平环境中进行了退火。测量了ITO的电阻和DSSC的性能。结果表明,DSSC处理期间的低氧退火可防止ITO电阻率显着增加。它还会引起开路电压(VOC)的增加和短路电流(ISC)的减少。先前的工作表明,TiO 2的电导率在低氧退火中增加。将此增加的电导率建模为在低氧退火过程中形成的还原TiOx层。假定该导电TiOx层具有增加的分流电阻的期望效果。但是,导电层也可以通过减少电子的漂移和扩散来限制电子从电解质流向染料。这些导致观察到的VOC和ISC发生变化。通过使用新颖的“导电层电阻模型”验证了该假设。

著录项

  • 作者单位

    Howard University.;

  • 授予单位 Howard University.;
  • 学科 Alternative Energy.;Engineering Materials Science.;Engineering Mechanical.
  • 学位 M.Eng.
  • 年度 2012
  • 页码 61 p.
  • 总页数 61
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号