首页> 外文学位 >Effects of turbulent magnetic fields on the transport and acceleration of energetic charged particles: Numerical simulations with application to heliospheric physics.
【24h】

Effects of turbulent magnetic fields on the transport and acceleration of energetic charged particles: Numerical simulations with application to heliospheric physics.

机译:湍流磁场对高能带电粒子的传输和加速的影响:数值模拟及其在日球物理学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Turbulent magnetic fields are ubiquitous in space physics and astrophysics. The influence of magnetic turbulence on the motions of charged particles contains the essential physics of the transport and acceleration of energetic charged particles in the heliosphere, which is to be explored in this thesis. After a brief introduction on the energetic charged particles and magnetic fields in the heliosphere, the rest of this dissertation focuses on three specific topics: 1. the transport of energetic charged particles in the inner heliosphere, 2. the acceleration of ions at collisionless shocks, and 3. the acceleration of electrons at collisionless shocks. We utilize various numerical techniques to study these topics. In Chapter 2 we study the propagation of charged particles in turbulent magnetic fields similar to the propagation of solar energetic particles in the inner heliosphere. The trajectories of energetic charged particles in the turbulent magnetic field are numerically integrated. The turbulence model includes a Kolmogorov-like magnetic field power spectrum containing a broad range of scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We show that small-scale variations in particle intensities (the so-called "dropouts") and velocity dispersions observed by spacecraft can be reproduced using this method. Our study gives a new constraint on the error of "onset analysis", which is a technique commonly used to infer information about the initial release of energetic particles. We also find that the dropouts are rarely produced in the simulations using the so-called "two-component" magnetic turbulence model (Matthaeus et al., 1990). The result questions the validity of this model in studying particle transport. In the first part of Chapter 3 we study the acceleration of ions in the existence of turbulent magnetic fields. We use 3-D self-consistent hybrid simulations (kinetic ions and fluid electrons) to investigate the acceleration of low-energy particles (often termed as "injection problem") at parallel shocks. We find that the accelerated particles al- ways gain the first amount of energy by reflection and acceleration at the shock layer. The protons can move off their original field lines in the 3-D electric and magnetic fields. The results are consistent with the acceleration mechanism found in previous 1-D and 2-D simulations. In the second part of Chapter 3, we use a stochastic integration method to study diffusive shock acceleration in the existence of large-scale magnetic variations. We show that the 1-D steady state solution of diffusive shock acceleration can be significantly modified in this situation. The results suggest that the observations of anomalous cosmic rays by Voyager spacecraft can be explained by a 2-D shock that includes the large-scale magnetic field variations. In Chapter 4 we study electron acceleration at a shock passing into a turbulent magnetic field by using a combination of hybrid simulations and test-particle electron simulations. We find that the acceleration of electrons is greatly enhanced by including the effect of large-scale magnetic turbulence. Since the electrons mainly follow along the magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons interacting with the shock front multiple times. Ripples in the shock front occurring at various scales also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. We discuss the application of this process in interplanetary shocks and flare termination shocks. We also discuss the implication of this study to solar energetic particles (SEPs) by comparing the acceleration of electrons with that of protons. The intensity correlation of electrons and ions in SEP events indicates that perpendicular or quasi-perpendicular shocks play an important role in accelerating charged particles. In Chapter 5 we summarize the results of this thesis and discuss possible future work.
机译:湍流磁场在空间物理学和天体物理学中无处不在。电磁湍流对带电粒子运动的影响包含了高能带电粒子在日光层中的传输和加速的基本物理学,这将在本论文中进行探讨。在简要介绍了日光层中的高能带电粒子和磁场之后,本论文的其余部分集中在三个特定的主题上:1.高能带电粒子在内部日光层中的传输,2.无碰撞冲击下的离子加速, 3.无碰撞冲击下电子的加速。我们利用各种数值技术来研究这些主题。在第二章中,我们研究了带电粒子在湍流磁场中的传播,类似于太阳高能粒子在内部太阳圈中的传播。湍流磁场中高能带电粒子的轨迹在数值上被积分。湍流模型包括一个类似于Kolmogorov的磁场功率谱,其范围从导致大规模场线随机游走的尺度到导致导致高能粒子共振俯仰角散射的小尺度。我们表明,使用这种方法可以再现出由航天器观测到的粒子强度(所谓的“漏失”)和速度色散的小范围变化。我们的研究为“起始分析”的误差提供了新的约束条件,这是一种通常用于推断有关高能粒子初始释放的信息的技术。我们还发现,在使用所谓的“两分量”磁湍流模型的模拟中很少会产生漏失(Matthaeus等,1990)。结果质疑了该模型在研究粒子输运中的有效性。在第3章的第一部分中,我们研究了存在湍流磁场时离子的加速度。我们使用3-D自洽混合模拟(运动离子和流体电子)来研究平行冲击时低能粒子(通常称为“注入问题”)的加速度。我们发现,被加速的粒子总是通过在激波层的反射和加速获得第一量的能量。质子可以在3D电场和磁场中脱离其原始场线。结果与先前的一维和二维模拟中的加速机制一致。在第3章的第二部分中,我们使用随机积分方法研究存在大范围磁变化时的扩散冲击加速度。我们证明了在这种情况下可以显着修改扩散冲击加速度的一维稳态解。结果表明,旅行者号航天器对宇宙射线的异常观测可以用二维冲击来解释,其中包括大范围的磁场变化。在第4章中,我们将混合模拟和测试粒子电子模拟相结合,研究了进入湍流磁场的冲击下的电子加速度。我们发现,通过包括大规模磁湍流的影响,电子的加速度大大提高了。由于电子主要跟随磁力线运动,因此空间中场线的大规模编织使快速移动的电子与激波前沿多次相互作用。各种尺寸的冲击波前部产生的波纹也会通过镜像电子来促进加速度。我们的计算表明,该过程有利于垂直冲击下的电子加速。我们讨论了该过程在行星际冲击和耀斑终止冲击中的应用。通过比较电子与质子的加速度,我们还讨论了这项研究对太阳高能粒子(SEP)的影响。 SEP事件中电子和离子的强度相关性表明,垂直或准垂直冲击在加速带电粒子中起重要作用。在第五章中,我们总结了本论文的结果,并讨论了未来可能的工作。

著录项

  • 作者

    Guo, Fan.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Physics Astrophysics.;Physics Electricity and Magnetism.;Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号