首页> 外文学位 >A systems level characterization and tradespace evaluation of a simulated airborne Fourier transform infrared spectrometer for gas detection.
【24h】

A systems level characterization and tradespace evaluation of a simulated airborne Fourier transform infrared spectrometer for gas detection.

机译:用于气体检测的模拟机载傅里叶变换红外光谱仪的系统级表征和交易空间评估。

获取原文
获取原文并翻译 | 示例

摘要

The remote sensing gas detection problem is one with no straightforward solution. While success has been achieved in detecting and identifying gases released from industrial stacks and other large plumes, the fugitive gas detection problem is far more complex. Fugitive gas represents a far smaller target and may be generated by leaking pipes, vents, or small scale chemical production. The nature of fugitive gas emission is such that one has no foreknowledge of the location, quantity, or transient rate of the targeted effluent which requires one to cover a broad area with high sensitivity. In such a scenario, a mobile airborne platform would be a likely candidate. Further, the spectrometer used for gas detection should be capable of rapid scan rates to prevent spatial and spectral smearing, while maintaining high resolution to aid in species identification. Often, insufficient signal to noise (SNR) prevents spectrometers from delivering useful results under such conditions. While common dispersive element spectrometers (DES) suffer from decreasing SNR with increasing spectral dispersion, Fourier Transform Spectrometers (FTS) generally do not and would seemingly be an ideal choice for such an application.;FTS are ubiquitous in chemical laboratories and in use as ground based spectrometers, but have not become as pervasive in mobile applications. While FTS spectrometers would otherwise be ideal for high resolution rapid scanning in search of gaseous effluents, when conducted via a mobile platform the process of optical interferogram formation to form spectra is corrupted when the input signal is temporally unstable.;This work seeks to explore the tradespace of an airborne Michelson based FTS in terms of modeling and characterizing the performance degradation over a variety of environmental and optical parameters. The major variables modeled and examined include: maximum optical path distance (resolution), scan rate, platform velocity, altitude, atmospheric and background emissivity variability, gas target parameters such as temperature, concentration-pathlength, confuser gas presence, and optical effects including apodization effects, single and double-sided interferograms, internal mirror positional accuracy errors, and primary mirror jitter effects. It is through an understanding of how each of the aforementioned variables impacts the gas detection performance that one can constrain design parameters in developing and engineering an FTS suitable to the airborne environment.;The instrument model was compared to output from ground-based FTS instruments as well as airborne data taken from the Airborne Hyperspectral Imager (AHI) and found to be in good agreement. Monte Carlo studies were used to map the impact of the performance variables and unique detection algorithms, based on common detection scores, were used to quantify performance degradation. Scene-based scenarios were employed to evaluate performance of a scanning FTS under variable and complex conditions. It was found that despite critical sampling errors and rapidly varying radiance signals, while losing the ability to reproduce a radiometrically accurate spectrum, an FTS offered the unique ability to reproduce spectral evidence of a gas in scenarios where a dispersive element spectrometer (DES) might not.
机译:遥感气体检测问题是没有直接解决方案的问题。尽管已经成功地检测和识别了从工业烟囱和其他大烟羽中释放出的气体,但逃逸性气体检测问题却要复杂得多。逸散气体代表的目标要小得多,并且可能是由于泄漏的管道,通风孔或小规模的化学品产生的。逃逸性气体的排放性质使得人们不了解目标流出物的位置,数量或瞬态速率,这要求人们以高灵敏度覆盖大面积区域。在这种情况下,移动机载平台可能是候选者。此外,用于气体检测的光谱仪应能够快速扫描,以防止空间和光谱拖尾,同时保持高分辨率以帮助进行物种识别。通常,信噪比(SNR)不足会阻止光谱仪在此类条件下提供有用的结果。普通色散元素光谱仪(DES)的信噪比随光谱色散的增加而降低,而傅立叶变换光谱仪(FTS)通常没有,而且似乎是此类应用的理想选择.FTS在化学实验室中无处不在,并且被用作地面光谱仪,但尚未在移动应用中普及。虽然FTS光谱仪在其他情况下非常适合于高分辨率快速扫描以寻找气体排放物,但当通过移动平台进行操作时,当输入信号在时间上不稳定时,光学干涉图形成光谱的过程会受到破坏。机载基于迈克尔逊的FTS的交易空间,可以在各种环境和光学参数上对性能下降进行建模和表征。建模和检查的主要变量包括:最大光程距离(分辨率),扫描速率,平台速度,高度,大气和背景发射率的可变性,气体目标参数(例如温度),浓度路径长度,气体的存在限制以及光学效应(包括切趾)效应,单面和双面干涉图,内部反射镜位置精度误差以及主要反射镜抖动效应。通过理解上述每个变量如何影响气体检测性能,可以在开发和设计适合机载环境的FTS时约束设计参数。将该仪器模型与地面FTS仪器的输出进行比较以及从机载高光谱成像仪(AHI)中获得的机载数据,发现它们之间具有良好的一致性。蒙特卡洛研究用于绘制性能变量的影响,基于常见的检测分数,独特的检测算法用于量化性能下降。基于场景的场景用于评估可变和复杂条件下扫描FTS的性能。结果发现,尽管存在严重的采样误差和辐射信号快速变化,但在无法再现辐射精确光谱的同时,FTS提供了独特的能力来再现气体的光谱证据,而色散元素光谱仪(DES)可能不会。

著录项

  • 作者

    Weiner, Aaron.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Remote Sensing.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号