首页> 外文学位 >Modeling behavior of failing materials by specialized numerical failure models.
【24h】

Modeling behavior of failing materials by specialized numerical failure models.

机译:通过专门的数值失效模型对失效材料的行为进行建模。

获取原文
获取原文并翻译 | 示例

摘要

With some knowledge of the suspected failure mechanisms, numerical models may be created to capture failure behavior within a particular material. These specialized numerical failure models can be used to predict the behavior of the specific material after the onset of failure mechanisms. Within this work specialized failure models are developed to analyze the behavior of failing materials within three material systems: a brittle matrix filled with stiff platelets, an elastomer matrix filled with graphene nanoplatelets, and an elastoplastic geomaterial.;Failure within the first system, a solid consisting of a brittle matrix filled with discontinuous platelets, may occur when a matrix crack grows unimpeded. Platelets bridging a crack may toughen the composite. However, this toughening is highly dependent on the interface between the matrix and the platelets. A numerical interface model is constructed and a crack is bridged with platelets with both a very strong interface and a stick-slip interface. It is found that if the interface is too strong it creates secondary stress concentrations that could damage previously uncracked matrix while a tailored stick-slip interface can still bridge the crack and limit secondary stress concentrations.;Failure in the second system, an elastomer matrix filled with graphene nanoplatelets, occurs by tearing in the elastomer. Recent experimental evidence has shown that with enough filler, both the failure strain and failure stress of the elastomer improve with increasing filler concentration. Beyond an optimum concentration the failure strain decreases. A numerical lattice model is built that captures the behavior of the composite. The model is able to identify the distributed deformation mechanisms responsible for these improvements in failure stress and strain as well as the reason for the reversal in failure strain.;The third material, elastoplastic geomaterials, fails by strain localization. A numerical finite element model is developed that can detect the strain localization instabilities, add these localizations in the finite element model with the extended finite element method, and model these failures as newly added contact surfaces. This allows material to be modeled beyond the initial localization failure. The usefulness of this model is demonstrated on a soil slope under eccentric loading.
机译:有了一些可能的故障机理知识,就可以创建数值模型来捕获特定材料内的故障行为。这些专门的数值失效模型可用于预测失效机制开始后特定材料的行为。在这项工作中,开发了专门的失效模型,以分析三种材料系统中失效材料的行为:填充刚性板的脆性基体,填充石墨烯纳米板的弹性体基体和弹塑性土工材料。当基质裂纹不受阻碍地生长时,可能会发生由充满不连续血小板的脆性基质组成的情况。桥接裂缝的血小板可能会使复合材料变硬。但是,这种增韧高度依赖于基质和血小板之间的界面。建立了数值界面模型,并用具有很强界面和粘滑界面的血小板弥合了裂缝。发现如果界面太强,则会产生二次应力集中,这可能会损坏先前未破裂的基体,而量身定制的粘滑界面仍会弥合裂纹并限制二次应力集中。;第二个系统的故障是,填充了弹性体基体石墨烯纳米片的化学反应是通过撕裂弹性体而发生的。最近的实验证据表明,使用足够的填料,弹性体的破坏应变和破坏应力会随着填料浓度的增加而改善。超过最佳浓度,破坏应变降低。建立了一个数字晶格模型来捕获复合材料的行为。该模型能够确定导致破坏应力和应变改善以及破坏应变逆转的原因的分布式变形机制。第三种材料,弹塑性土工材料,由于应变局部化而失效。建立了一个数值有限元模型,可以检测应变局部不稳定性,并使用扩展有限元方法将这些局部化添加到有限元模型中,并将这些破坏建模为新添加的接触面。这样就可以对超出初始定位失败范围的材料进行建模。在偏心荷载作用下的土质边坡上证明了该模型的有效性。

著录项

  • 作者

    Sanborn, Scott Edward.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号